• Title/Summary/Keyword: 수압제어

Search Result 52, Processing Time 0.021 seconds

Liquefaction Potential for Coal Ash Mixed Sand by Strain-Controlled Cyclic Triaxial Test (변형률제어 진동삼축시험법을 이용한 석탄회가 혼합된 모래시료의 액상화 평가)

  • 이병식;정경순
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.129-136
    • /
    • 2001
  • 본 논문에서는 석탄회 매립지반의 액상화 가능성을 평가하기 위해 순수 모래시료와 더불어서 모래시료와 석탄회가 혼합된 모래시료에 대한 일련의 진동삼축실험을 변형률제어 방법으로 수행하였다. 실험결과 진동하중에 의해서 시료 내에 발생하는 간극수압의 크기는 작용하는 전단변형률의 크기에 심각하게 영향을 받고, 작용하는 전단변형률이 지반의 한계전단변형률 보다 작은 경우에는 진동수가 높은 조건에서도 간극수압이 발생하지 않음을 알았다. 또한 전단변형률이 약 0.1%보다 작고 한계전단변형률에 가까운 경우에는 순수 모래시료와 비교하여 본 논문에서 조사한 석탄회 함유율 범위 (10%~30%)의 시료에서 간극수압이 더 크게 발생하였다. 반면에, 전단변형률이 큰 경우에는 순수 모래시료에서 간극수압이 크게 발생하는 추세를 보였다. 반복 전단에 따른 간극수압의 발생량은 전반적으로 석탄회 함유율이 증가할수록 커지는 경향을 보였다. 이러한 결과를 근거로 해안이나 하천에 인접한 한계지 개발에 있어서 사질토에 석탄회를 혼합 매립하여 지반을 조성하는 경우에 액상화에 대해서 불안정한 지반이 될 가능성이 있는 것으로 판단되었다.

  • PDF

Structural Analysis of Hydraulic Valve Meter (밸브 수압측정기의 구조해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1447-1452
    • /
    • 2012
  • Existing hydraulic valve meter used in industrial fields precise pressure measurement gives inconvenience in precise measurement due to manually regulated pressures. In order to improve this inconvenience, the hydraulic valve meter was designed by using automatic design program CATIA and structural analysis of the designed hydraulic valve meter was conducted and internal water leaking, stress, strain and total deformation were obtained by applying three dimensional finite element code ANSYS. These results will be provided to develop new concepts of hydraulic valve meters as fundamental data.

Development of Hydraulic Testing Machine for Flexible Seal on Solid Rocket Motor (고체모터 플렉시블 씰을 위한 수압시험장치 개발)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Kim, Byung-Hun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.227-230
    • /
    • 2008
  • Movable nozzle with a flexible seal have been used for Thrust Vector Control of the Solid Rocket Motor. The Hydraulic Testing Machine is consisted of Chamber, Actuator, Counterpotentiometer, and evaluates performance of Flexible seal for spring torque and axial compression. The qualification test of Flexible seal was conducted on design condition. A study fix up method of formulation, operation, inspection on Hydraulic testing machine.

  • PDF

Field Application of Hydraulic Rock Splitting Technique to Biotite Granite (흑운모화강암 지역에 대한 수압암반절개기술의 현장 적용)

  • Park, Jongoh;Lee, Dal-Heui;Woo, Ik
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.263-270
    • /
    • 2017
  • Hydraulic rock splitting is a technique which leads to failure of rockmass by means of water injection with a pressure higher than the tensile strength of rockmass, using straddle packer installed in boreholes drilled from free surface. Field tests were conducted in this study for several slopes of biotite granite according to various designs for borehole layout and water injection. Test results showed that new cracks were generated to connect to adjacent holes or that pre-existed cracks were propagated by injection, finally leading to failure. In particular, this study suggests the possibility of controlling the direction of generated cracks with guide slot, since new cracks were generated parallel to the guide slots carved on a borehole wall before injection. Various types of borehole layout and injection methods should be further developed for the practical uses, considering the factors influencing on crack generation.

The Relationships between Excess Pore Water Pressure and Strain in Normally Consolidated Saturated Clays During Undrained Shear (포화된 정친압밀점토의 비배수 전단중에 발생하는 과잉간극 수압과 변형의 관계)

  • 박정용;정인주
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1986
  • Consolidated undrained standard triaxial tests for two remoulded clays and one undisturbed clay were carried out in order to find out the relationship between excess pore water pressure and axial strain in mortally consolidatated saturated clays during undrained shear. Tests were performed with isotropically-normally consolidated specimens by strain controlled and stress controlled loading. As the result of this stud!'a hyperbolic function expressing the relationship between pore water pressure and strain was found out, and it showed the same form as the Kondner's hyperbolic function for stress·strain behaviour. Two parameters used for the function can be obtained by CU-triaxial test.

  • PDF

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.

An Experimental Study on the Effect of Malfunctioning of Drainage System on NATM Tunnel Linings (NATM 터널의 배수시스템 수리기능저하가 터널 라이닝에 미치는 영향)

  • Shin, Jong-Ho;Kwon, Oh-Yeob;Shin, Yong-Suk;Yang, Yu-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.77-84
    • /
    • 2007
  • One of the most sensitive design specifications to be considered is infiltration and external pore-water pressures on underground structure construction. Development of pore-water pressure may accelerate leakage and consequently cause deterioration of the lining. In this paper, the development of pore-water pressure due to malfunctioning of drainage system and its potential effect on the linings are investigated using physical model tests. The deterioration procedure was simulated by controlling both permeability and flow rate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanism of pore-water pressure development on the tunnel lining. In addition, they showed that controlling flow rate is more effective method fur simulating deterioration procedure than permeability control. The laboratory model tests were reproduced using coupled numerical method, and showed that the effect of deterioration of drainage system can be theoretically expected using coupled numerical modeling method.

The hydrostatic actuation test on flexible seal of KSLV-I Kick Motor (KSLV-I 킥모터 플렉시블 씰 수압 구동 시험)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.153-156
    • /
    • 2009
  • The pitch and yaw axis controls of Kick Motor, KLSV-I second propulsion system, was provided by the flexible seal that consists of alternate laminate of natural rubber and composite reinforcements between forward and aft ring. A hydrostatic actuating test has been conducted to evaluate a performance of the manufactured flexibke seal before it is assembled at the nozzle. Through the tests, we have verified an actuation torque and axial displacement of the flexible seal according to pressure variation. The actuation torque and axial displacement of all flexible seal is shown below 60kgf-m/deg at without pressure and 6mm at MEOP respectively.

  • PDF

Effects of Injection and Temperature Variations on the Breakdown Pressure of Rocks (암석의 수압파쇄특성에 미치는 주입률과 온도의 영향)

  • 이찬구;송무영;최원학;장천중;이종옥
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.129-138
    • /
    • 1995
  • To elucidate the effects of flow rate on the hydraulic fracturing property of andesite, the hydraulic fracturing tests were conducted under three flow rates. As the tests are conducted with 1ml/min, 2ml/min and 3 ml/min under the constant axial load of 40 kN, the breakdown pressures of andesite seem to be constant as 163kg/cm$^2$. The hydraulic fracturing tests were carried out under the temperatures of five stages to elucidate the effects of temperature variation on hydraulic fracturing property of granite. As the tests are carried out under the constant flow rate of 1.7ml/min, with the axial load of 40kN, the breakdown pressures of granite are 168kg/cm$^2$ at room temperature, and 124kg/cm$^2$ at 20$0^{\circ}C$. The breakdown pressure decreases about 25% than that of room temperature with increasing the temperature. Under the controlled flow rates, the initiation pressures of the microcracks of granite are well coincided with the breakdown pressures and these results are also confirmed by the levels of acoustic emission.

  • PDF

Characteristics and control of intermittent flow in water distribution systems due to restricted supply (상수도관망에서 제한급수에 따른 간헐적 흐름의 특성 및 제어)

  • Yang, Kangseung;Kim, Donghong;Jung, Kwansoo;Kim, Juhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The water distribution system should be invariably operated on continuous pattern for 24 hours a day. Occasionally, it is not practically possible to operate for 24 hours due to water shortage or financial constraints. Therefore an intermittent water supply is unavoidable in water shortage area and developing countries. But the intermittent water supply can introduce large pressure forces and rapid fluid accelerations into a water supply network. These disturbances may result in new pipe failure, leakage and secondary contamination. This paper proposed an improvement methodology to prevent the disturbances by intermittent water supply. For the study, the hydraulic variation of intermittent flow in water distribution system was measured and analyzed in the field by comparing with simulation of hydraulic model. Installations of control valves such as, pressure reducing and sustaining and air valves were employed for pressure and flow control. The effectiveness of the methods are presented by comparing hydraulic conditions before and after introducing the proposed solutions.