• Title/Summary/Keyword: 수신 집속

Search Result 22, Processing Time 0.01 seconds

A Study on the Improving the Resolution using Synthetic Focusing in B-mode Ultrasound Imaging System (B-mode 초음파 진단장치에서 합성 집속방법에 의한 해상도 증대에 관한 연구)

  • 배무호;정목근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.14-22
    • /
    • 1998
  • 기존의 널리 사용되는 초음파 영상진단기에서는 수신집속은 모든 점에 대해 행하는 것이 가능하지만 송신접속은 미리 정해진 수 개의 점에 대해서만 행하는 한계가 있다. 본 논문에서는 영상화할 대상이 정지해 있거나 매우 느리게 움직이는 경우에 한하여, 송신음장 의 집속은 합성집속방법(synthetic focusing)을 사용하고, 수신집속은 동적 집속(dynamic receive focusing)을 이용함으로써 모든 영상점에서 송수신 집속하여 측방향 해상도를 향상 시키는 방법을 제안하였다. 컴퓨터 시뮬레이션 결과 초점깊이에서와 같은 해상도를 유지하 는 음장거리(fields of depth)가 기존의 방법에 비하여 월등히 우수하였으며, 3.5MHz의 선형 배열변환기를 이용하여 펜텀 영상에 대한 실험 결과도 모든 영상 깊이에서 측방향 해상도가 기존의 B-mode의 영상보다 우수하였다.

  • PDF

Theoretical Development and Experimental Investigation of Underwater Acoustic Communication for Multiple Receiving Locations Based on the Adaptive Time-Reversal Processing (다중수신 수중음향통신을 위한 적응 시계열반전처리 기법의 이론연구와 실험적 검증)

  • Shin Kee-Cheol;Byun Yang-Hun;Kim Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.239-245
    • /
    • 2006
  • Time-reversal processing (TRP) has been shown as an effective way to focus in both time and space. The temporal focusing properties have been used extensively in underwater acoustics communications. Recently. adaptive time-reversal processing (ATRP) was applied to the simultaneous multiple focusing in an ocean waveguide. In this study. multiple focusing with ATRP is extended to the underwater acoustic communication algorithm for multiple receiving locations. The developed algorithm is applied to the underwater acoustic communication to show, via simulation and real data, that the simultaneous self-equalization at multiple receiving locations is achieved.

A Study of Sidelobe Reduction Based on FFT in Ultrasound Images (FFT를 기반으로 한 초음파 영상의 Sidelobe 영향 감소에 관한 연구)

  • 정목근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.40-47
    • /
    • 1999
  • Focusing is widely used to increase the resolution in ultrasound transmit field. It increases signal levels returning from the mainlobe direction and decreases those due to sidelobe directions. However, when the sidelobes cannot be completely canceled, the resulting image resolution is greatly deteriorated. This paper proposes a method of improving the resolution by scaling the received signal according to the difference between the mainlobe and sidelobe levels computed in the frequency domain by the use of Fourier transform. The proposed method is verified by computer simulation and experiments, and is shown to be highly effective in narrowing the mainlobe width and decreasing the sidelobe levels.

  • PDF

Suppression of side lobe and grating lobe in ultrasound medical imaging system (의료용 초음파 영상 시스템에서 부엽과 격자엽의 억제)

  • Jeong, Mok Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.525-533
    • /
    • 2022
  • We propose an effective method for suppressing both side and grating lobes by applying 2-dimensional Fourier Transform to the received channel data during the receive focusing process of an ultrasound imaging system. When the signal from the image point is focused, the channel signals have the same DC value across the channels. However, even after echoes from outside an imaging point are focused, they are manifested as having different spatial frequencies depending on their incident angles. Therefore, after the receive focusing delay time is applied, 2-D Fourier Transform is performed on the time-channel data to separate the DC component and other frequency components in the spectral domain, and the weighting value is defined using the ratio of the two values. The side lobe and grating lobe were suppressed by multiplying the ultrasound image by a weighting value. Ultrasound images with a frequency of 5 MHz were simulated in a 64-channel linear array. The grating lobe appearing in the ultrasound image was completely removed by applying the proposed method. In addition, the side lobe was reduced and the lateral resolution was greatly increased. Results of computer simulation on a human organ mimicking image show that the proposed method can aid in better lesion diagnosis by increasing the image contrast.

Simultaneous Multiple Transmit Focusing Method with Orthogonal Chirp Signal for Ultrasound Imaging System (초음파 영상 장치에서 직교 쳐프 신호를 이용한 동시 다중 송신집속 기법)

  • 정영관;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .

Characteristics of a 2-2 Composite Transmitting/P(VDF-TrFE) Receiving Wideband Focusing Ultrasonic Transducer (2-2 Composite 송신/P(VDF-TrFE) 수신 광대역 집속 초음파 트랜스듀서의 특성)

  • Ha Kang-Lyeol;Kim Dong-Hyun;Kim Moo-Joon;Kim Jung-Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.357-358
    • /
    • 2004
  • 생체 피부하 약 5mm이내 영역에 대한 고분해능의 B-모드 영상을 얻는 데 사용할 수 있는 축 방향 분해능 $30{\mu}m$ 이하인 VHF 대역 초음파 트랜스듀서로서 용융석영을 음향버퍼의 하여 그 양단에 송신용 2-2 composite와 수신용 P(VDF-TrFE)를 설치한 송수신 분리형의 집속 트랜스듀서의 구조를 새로이 제안하고, 그 전기적 음향적 특성을 시뮬레이션 하였다. 그 결과, 2-2 composite 투께 $18{\mu}m$와 P(VDF-TrFE) 두께 $12{\mu}m$의 트랜스듀서는 중심주파수 43.0MHz, 비대역 $74\%$이며, 삽입손실이 25dB인 비교적 우수한 트랜스듀서가 될 수 있음을 알았다.

  • PDF

An Experimental Study of the Synthetic Sinc Wave in Ultrasonic Imaging (초음파 의료 영상에서 합성 Sinc 음장 집속방법의 실험적 고찰)

  • 이광주;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.243-251
    • /
    • 2002
  • Synthetic zinc wave employs Pulsed plane wave as transmit beam with linear time delay curve. The received echoes in different transmit directions at different transmit times are superposed at imaging Points with Proper time delay compensation using synthetic focusing scheme. This scheme. which uses full aperture in transmit, obtains a high SNR image, and also features high lateral resolution by using two way dynamic focusing at all imaging depths. In this Paper, we consider the Problems in realization of synthetic zinc wave. Also. we have applied the scheme to obtain phantom and in-vivo images using a linear array of 5 MHz. In phantom test. experimental images show high resolution over a more extended imaging depth than conventional fixed Point transmit and receive dynamic focusing schemes In-vivo images show that the resolution could not overcome conventional focusing systems because of motion blurring and(or) aberration of tissue. but the frame rate tan be increased by a factor of more than 5 compared to conventional focusing schemes. with competitive resolution at all imaging depths .

Suppression of side lobe using distance weight in spectrum of channel signal in medical ultrasound imaging system (의료용 초음파 영상 시스템에서 채널신호의 스펙트럼에서 거리 가중치를 이용한 부엽의 억제)

  • Yu Rim Lee;Mok Kun Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • In medical ultrasound imaging systems, Side lobes may appear if signals outside the imaging point are not completely removed during receive focusing. If the time signal of the side lobe overlaps with the time signal (main lobe) from the image point, it is difficult to completely remove it using filter processing in the time domain. However, In the receive focusing process, when time-channel signals are Fourier-transformed, the main lobe and side lobe signals are spatially separated in the spectral domain. Therefore, the side lobes can be suppressed by multiplying the image with magnitude weights, which are determined by the magnitudes of the main and side lobes calculated in the spectral domain. In addition, when the main lobe and the side lobe spectrum are adjacent, the distance weight was applied based on the distance between them. In a 5 MHz ultrasound imaging system using a 64-channel linear transducer, point reflector and speckle images with cysts of various brightness were synthesized and weights were applied to the ultrasound image. Using computer simulations, we confirmed that the side lobes were greatly reduced without affecting the spatial resolution in the point reflector image, and the contrast was significantly improved in the cyst image with computer simulations.

A Study on the Realization of Transmit and Receive Focusing Using Linited-Diffraction Beam in Ultrasound Imaging (초음파 영상에서 제한회절빔을 이용한 송수신 집속의 구현에 관한 연구)

  • 정목근;권성재;안영복
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.67-71
    • /
    • 1998
  • 초음파 선형트랜스듀서에서 제한회절음장은 영상깊이에서 다른 방향으로 진행하는 평면파들의 선형적인 중첩으로부터 구한다. 제한회절음장을 구현하기 위한 송신음장은 영상 깊이를 지나가는 평면파들의 공간적인 확장으로부터 구해지는데 실제의 하드웨어로 구현하 기 어렵다. 본 논문은 진행방향이 다른 pulsed mode 평면파를 각각 송신한 후, 얻어진 데이 터로부터 합성집속 방법에 의하여 제한회절빔을 구현하였다. 제안한 방법은 모든 송신소자 에서 발사되는 음장의 크기가 동일하므로 송신전력이 증가하여 신호대잡음비와 명암비를 증 가시키며 간단한 하드웨어로 구현이 가능하다. 시뮬레이션 결과는 송신은 한점집속, 수신은 동적집속을 사용하는 기존의 방법과 비교하여 주엽(mainlobe)의 폭과 부엽(sidelobe)의 크기 관점에서 우수함을 증명하였다.

  • PDF

Display-Pixel-Based Focusing Method for Ultrasound Imaging (의료 초음파 영상을 위한 화소단위 집속기법)

  • 황재섭;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.419-431
    • /
    • 2000
  • In this paper, a new beamforming technique is proposed, which can completely eliminate all the artifacts caused by digital scan converter. In the proposed method, named display-pixel-based focusing(DPBF) by the authors, ultrasound waves are focused directly at the display pixels instead of sampling points on the polar coordinate. Consequently. the DPBF system does not require the digital scan converter. To verify the proposed method, we modified a commercial scanner and performed experiments with a 3.5 MHz convex array and a 7.5 MHz linear array. We also defined and measured ICRA/B(Image Coarseness Ratio) to compare the image quality quantitatively. The experimental results with in vivo and in vitro data show that the proposed method improves the ICRA/B considerably, resulting in much smoother and finer images.

  • PDF