• Title/Summary/Keyword: 수소 환원

Search Result 609, Processing Time 0.028 seconds

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

The Catalytic Reduction of Carbon Dioxide by Butane over Nickel loaded Catalysts (니켈담지촉매상에서 부탄에 의한 이산화탄소의 환원반응)

  • Yoon, Cho-Hee;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.543-549
    • /
    • 1997
  • The direct reaction of carbon dioxide($CO_2$) with butane($C_4H_{10}$) to obtain synthesis gas and hydrocarbon compounds have been studied on nickel loaded catalysts. In the reaction of $CO_2$ with $C_4H_{10}$, Ni loaded catalysts showed similar activity with Pt catalyst and Coke deposition on the catalyst was severe by dehydrogenation of butane. The main products were carbon monoxide and hydrogen, when alumina and Y type zeolite were used as a support. Instead, a great deal of aromatic hydrocarbons were obtained on the Ni loaded ZSM-5 catalyst. The conversion of $CO_2$ increased with the increasing molar ratio of $CO_2$/$C_4H_{10}$ on Ni/ZSM-5, Ni/NaY and Ni/alumina catalyst, but the conversion decreased again from the ratio of 2. The value of $CO_2$ conversion was the highest at the 5wt% of Ni loading on ZSM-5 catalyst. A part of cokes deposited on the catalysts diminished when only $CO_2$ gas or water steam flowed into the reactor. The coke deposited on the catalysts was very reactive and it may be an important intermediate for the carbon dioxide reforming reaction.

  • PDF

Characteristics of CL-SPEEK/HPA Membrane Electrodes with Pt-Ni and Pt-Co Electrocatalysts for Water Electrolysis (전극 촉매 Pt-Ni 및 Pt-Co를 이용한 수전해용 공유가교 CL-SPEEK/HPA 막전극의 특성)

  • Woo, Je-Young;Lee, Kwang-Mun;Jee, Bong-Chul;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • The electrocatalystic prperties of Pt-Co and Pt-Ni with heteropolyacids (HPAs) entrapped in covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/HPA membranes were investigated for water electrolysis. The HP As, including molybdophosphoric acid (MoPA), and tungstophosphoric acid (TPA) were both used as membrane additives and electrocatalysts. The membrane electrode assembly (MEA) was prepared by a nonequilibrium impregnation-reduction (I-R) method. $Pt(NH_3)_4Cl_2$, $NiCl_2$ and $CoCl_2$ as electrocatalytic materials and $NaBH_4$ as reducing agent were used. I order to enhance electrocatalytic activity, the catalyst layer prepared above was electrodeposited (Dep) with HP A. Surface morphologies and physico-chemical properties of MEA were investigated by means of SEM, EDX and XRD. The electrocatalytic properties of composite membranes such as the cell voltage and coulombic charge in CV were in the order of magnitude: CL-SPEEK/MoPA40 (wt%) > CL-SPEEK/TPA30 > Nafion117. In the optimum cell applications for water electrolysis, the cell voltage of Pt/CL-SPEEK-MoPA40/Pt-Co (Dep-MoPA) and Pt/CL-SPEEK-TPA30/Pt-Co (Dep-TPA) was 1.75 Vat $80^{\circ}C$ and $1\;A/cm^2$ and voltage efficiency was 87.1%. Also, the observed activity of Pt-Co (84:16 atomic ratio by EDX) is a little higher than that of Pt-Ni (86: 14). The current density peak of electrodeposited electrodes were better a little than those of unactivated electrodes based on the same membranes.

Quality of 'Hayward' Kiwifruit by Low-Dose Gamma Irradiation (저전량 감마선 조사된 헤이워드 참다래의 품질 특성)

  • Kim, Kyoung-Hee;Sohn, Cheon-Bae;Lee, Seul;Lee, Sung-A;Lee, Jeong-Ok;Kwon, Jong-Sook;Yook, Hong-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • In order to control or kill insects and pests, control ripening, and delay spoilage, kiwifruits were irradiated with gamma rays at 0.1, 0.3, and 0.5 kGy. Vitamin C, hydrogen donating activity, sugar content, organic acid content, texture, chromaticity, and sensory qualities were examined in the fruits over 2 weeks of storage at 20$^{\circ}C$. Vitamin C content and hydrogen donating activity decreased during the storage period, but they were not reduced by the irradiation process. Total sugar and reducing sugar contents increased as the storage period increased; however, these were also unaffected by irradiation. Organic acid content significantly decreased as a result of irradiation, and all samples had decreases in organic acids over the storage period. Hardness decreased with the storage period as well as with increasing doses of irradiation. In terms of Hunter's color values, irradiation increased the $L^*-\;and\;a^*-$ values in the initial storage period, but it did not have any significant effect on these values during the 2 weeks of storage. When compared with control samples, the irradiated samples had lower color and overall acceptability scores just after irradiation (week 0). However, during the storage period, the irradiated samples had higher scores for smell, taste, texture, and overall acceptability than the control. In conclusion, based on the results, gamma irradiation up to 0.5 kGy is the recommended treatment to maintain the overall quality attributes kiwifruit.

  • PDF

Microbial and Physico-chemical Characteristics of a Maesil(Prunus mume) Treated with Low Levels of Gamma Rays (저선량 감마선 조사에 의한 매실의 미생물학적 및 이화학적 특성 평가)

  • Lee, Seong-A;Kim, Kyung-Hee;Kim, Mi-Seon;Park, No-Kyoung;Yook, Hong-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.989-996
    • /
    • 2008
  • In this study we assessed the effects of gamma irradiation ($0.5{\sim}3\;kGy$) on the microbial and physico-chemical characteristics of maesil (Prunus mume) stored for 9 days at $20^{\circ}C$. Total aerobic bacteria, yeasts and molds were significantly decreased with increases in the irradiation dosage. In terms of the Hunter's color value, irradiated samples evidenced a higher b-value, but a lower a-value than the non-irradiated samples. Hardness was reduced with increment in the irradiation dose level. The contents of total sugar, hydrogen donating activity and organic acids were not affected by irradiation. The reducing sugar contents of the irradiated samples were superior to those of the non-irradiated samples. Vitamin C contents were reduced with the progression of storage periods and increases in the dosage level. These results demonstrated that gamma irradiation of 0.5 to 3 kGy affected the microbiological safety of maesil, but did not affect the physico-chemical characteristics(total sugar, hydrogen donating activity and organic acid) but the Hunter's color value, hardness, and vitamin C contents of the maesil deteriorated with gamma irradiation.

  • PDF

A Study on Sulfonated Fluorenyl Poly(ether sulfone)s as Catalyst Binders for Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 촉매층 바인더를 위한 Sulfonated Fluorenyl Poly(ether sulfone)에 관한 연구)

  • Cho, Won Jae;Lee, Mi Soon;Lee, Youn Sik;Yoon, Young Gi;Choi, Young Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Oxygen reduction reaction in the fuel cell (ORR) plays a dominant role in the overall reaction. In addition, the low compatibility between the membrane and the binder consisted of different materials, greatly reduces the efficiency of the fuel cell performance. In view of these two problems, geometrically modified copolymers with 9.9_Bis (4-hydroxyphenyl) were synthesized via condensation reaction instead of conventional biphenol and were adopted as hydrocarbon ionomer binders. By utilizing these binders, two kinds of MEAs using fluorinated Nafion membrane and hydrocarbon based membrane were manufactured in order to electrochemical performance evaluation. With current-voltage curves, there was no significant difference in the 0.6 V when two types of membrane were applied. Also, tafel slope became considerably lower as compared to the Nafion membrane. Thus, it is determined that the new hydrocarbon binder is expected to contribute the improvement in performance of fuel cells.

Biological Activities of Methanol Extract of Angelica gigas Nakai (참당귀 Methanol 추출물의 생리활성)

  • Park, Kyung-Wuk;Choi, Sa-Ra;Hong, Hye-Ran;Kim, Jae-Yong;Shon, Mi-Yae;Seo, Kwon-Il
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.655-661
    • /
    • 2007
  • The biological activities of methanol extracts of Angelica gigas Nakai, such as antioxidation, anticancer and immuno-activity, were investigated in relation to development of functional foods. Anti-oxidation activity in the methanol extracts were assessed by hydrogen donating activity, reducing power and hydroxyl radical scavenging activity. Activities were dose-dependent over concentrations of 0.1, 0.5 and 1 mg/mL, with thehydrogen donating activity being over 50% at 1 mg/mL concentration. The methanol extracts inhibited the proliferation of SW480 cells in a dose-dependent manner, and chromatin condensation and apoptotic bodies were observed by fluorescence microcopy in the cells treated with the extracts for 24 hr. Caspase-3 activity was also increased in a dose-dependent manner in cells treated with the extracts relative to control cells. The extracts did not induce the proliferation of mouse spleen cells or NO production in macrophage cells (RAW 264.7). These results show that the methanol extract had slight anti-oxidative activity and did not increase immuno-activity, but inhibited proliferation of SW480 through apoptosis via a caspase dependent pathway.

Oxidation Behavior of the HVOF-sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coating Layer (HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 산화 거동)

  • Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.757-765
    • /
    • 1998
  • This study was performed to investigate the influence of fuel/oxygen ratio (F/O= 3.2, 3.0, 2.8) on the oxidation behavior of two kinds of (20wt%NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$, and 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$) composite powder with different manufacturing method. The results show that the oxidation behavior between the 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ and 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating was widely different. The surface morphology of the coating composed of 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ was changed to porous with F/O ratio by the aggressive evolution of gas phases($\textrm{CO}_2$, CO and $\textrm{CrO}_3$) and the oxide cluster composed of Ni and Cr were grown after oxidation at $1000^{\circ}C$ for 50 hours. But the surface morphology of the coating composed of 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ was not changed to porous after oxidation at $1000^{\circ}C$ for 50 hours. Therefore, the reason for high oxidation rate is due to activation of $\textrm{Cr}_{3}\textrm{C}_{2}$ to oxidation by entrapped oxygen gases within coating layer, and to closely relate with the decomposition of $\textrm{Cr}_{3}\textrm{C}_{2}$ to $\textrm{Cr}_{7}\textrm{C}_{3}$ phase. Accordingly, On the evidence of these results, the study about the oxidation behavoir of the HVOF sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating depending on hydrogen flow rate must be done.

  • PDF

Reactive oxygen species-dependent down-regulation of ubiquitin C-terminal hydrolase in Schizosaccharomyces pombe (Schizosaccharomyces pombe에서의 유비퀴틴 C-말단 가수분해효소의 활성산소종 의존성 하향조절)

  • Jo, Hannah;Lim, Hye-Won;Kwon, Hee-Souk;Lim, Chang-Jin;Park, Kwang Hark;Jin, Chang Duck;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.236-241
    • /
    • 2016
  • The Schizosaccharomyces pombe $sdu1^+$ gene, belonging to the PPPDE superfamily of deubiquitinating enzyme (DUB) genes, was previously shown to encode a protein with ubiquitin C-terminal hydrolase (UCH) activity and to participate in the response against oxidative and nitrosative stresses. This work focused on the reactive oxygen species (ROS)-dependent regulation of the S. pombe $sdu1^+$ gene. UCH activities, encoded by the $sdu1^+$ gene, were attenuated in the S. pombe cells exposed to $H_2O_2$, superoxide radical-generating menadione (MD), and nitric oxide (NO)-generating sodium nitroprusside (SNP). Reduced glutathione (GSH) and its precursor N-acetylcysteine (NAC) were able to significantly enhance the UCH activities in the absence or presence of $H_2O_2$. However, the influences of both GSH and NAC on the ROS levels in the absence or presence of $H_2O_2$ were opposite to their effects on the UCH activities under the same conditions. The UCH activities in the Sdu1-overexpressing S. pombe cells were also diminished under exposure to $H_2O_2$, MD and SNP, but still remained to be higher than those in the vector control cells. In brief, it is proposed that the S. pombe $sdu1^+$ gene is regulated by ROS in a negative manner, the meaning of which largely remains elusive.

Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System (흡착광산화 시스템을 이용한 효과적인 SSC 페수처리)

  • Kim, Jong Kyu;Lee, Min Hee;Jung, Yong Wook;Joo, Jin Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF