References
- Bheda, A., Shackelford, J., and Pagano, J.S. 2009. Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PLoS One 4, e6764. https://doi.org/10.1371/journal.pone.0006764
- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Carolan, B.J., Heguy, A., Harvey, B.G., Leopold, P.L., Ferris, B., and Crystal, R.G. 2006. Up-regulation of expression of the ubiquitin carboxyl-terminal hydrolase L1 gene in human airway epithelium of cigarette smokers. Cancer Res. 66, 10729-10740. https://doi.org/10.1158/0008-5472.CAN-06-2224
- Colland, F. 2010. The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem. Soc. Trans. 38(Pt 1), 137-143. https://doi.org/10.1042/BST0380137
- Cotto-Rios, X.M., Bekes, M., Chapman, J., Ueberheide, B., and Huang, T.T. 2012. Deubiquitinases as a signaling target of oxidative stress. Cell Rep. 2, 1475-1484. https://doi.org/10.1016/j.celrep.2012.11.011
- Eletr, Z.M. and Wilkinson, K.D. 2014. Regulation of proteolysis by human deubiquitinating enzymes. Biochim. Biophys. Acta 1843, 114-128. https://doi.org/10.1016/j.bbamcr.2013.06.027
- Iyer, L.M., Koonin, E.V., and Aravind, L. 2004. Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 3, 1440-1450. https://doi.org/10.4161/cc.3.11.1206
- Johnston, S.C., Riddle, S.M., Cohen, R.E., and Hill, C.P. 1999. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18, 3877-3887. https://doi.org/10.1093/emboj/18.14.3877
- Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174. https://doi.org/10.3109/19396368.2012.681420
- Kim, Y., Jo, H., and Lim, C.J. 2013. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe. Can. J. Microbiol. 59, 789-796. https://doi.org/10.1139/cjm-2013-0453
- Kim, J.H., Park, K.C., Chung, S.S., Bang, O., and Chung, C.H. 2003. Deubiquitinating enzymes as cellular regulators. J. Biochem. 134, 9-18. https://doi.org/10.1093/jb/mvg107
- Komander, D., Clague, M.J., and Urbe, S. 2009. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell. Biol. 10, 550-563. https://doi.org/10.1038/nrm2731
- Liu, Y., Lashuel, H.A., Choi, S., Xing, X., Case, A., Ni, J., Yeh, L.A., Cuny, G.D., Stein, R.L., and Lansbury, P.T.Jr. 2003. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10, 837-846. https://doi.org/10.1016/j.chembiol.2003.08.010
- Maiti, T.K., Permaul, M., Boudreaux, D.A., Mahanic, C., Mauney, S., and Das, C. 2011. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. FEBS J. 278, 4917-4926. https://doi.org/10.1111/j.1742-4658.2011.08393.x
- Myers, A.M., Tzagoloff, A., Kinney, D.M., and Lusty, C.J. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299-310. https://doi.org/10.1016/0378-1119(86)90028-4
- Ramakrishna, S., Suresh, B., and Baek, K.H. 2011. The role of deubiquitinating enzymes in apoptosis. Cell. Mol. Life Sci. 68, 15-26. https://doi.org/10.1007/s00018-010-0504-6
- Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D. 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397. https://doi.org/10.1146/annurev.biochem.78.082307.091526
- Rolfe, M., Chiu, M.I., and Pagano, M. 1997. The ubiquitin-mediated proteolytic pathway as a therapeutic area. J. Mol. Med. (Berl) 75, 5-17. https://doi.org/10.1007/s001090050081
-
Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular
$H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. https://doi.org/10.1006/abbi.1993.1222 - Satoh, J.I. and Kuroda, Y. 2001. Ubiquitin C-terminal hydrolase-L1 (PGP9.5) expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines, neurotrophic factors or heat stress. Neuropathol. Appl. Neurobiol. 27, 95-104. https://doi.org/10.1046/j.1365-2990.2001.00313.x
- Shen, H., Sikorska, M., Leblanc, J., Walker, P.R., and Liu, Q.Y. 2006. Oxidative stress regulated expression of ubiquitin Carboxylterminal Hydrolase-L1: role in cell survival. Apoptosis 11, 1049-1059. https://doi.org/10.1007/s10495-006-6303-8
- Todi, S.V., Winborn, B.J., Scaglione, K.M., Blount, J.R., Travis, S.M., and Paulson, H.L. 2009. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J. 28, 372-382. https://doi.org/10.1038/emboj.2008.289
- Tse, W.K., Eisenhaber, B., Ho, S.H., Ng, Q., Eisenhaber, F., and Jiang, Y.J. 2009. Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development. BMC Genomics 10, 637. https://doi.org/10.1186/1471-2164-10-637
- Wolberger, C. 2014. Mechanisms for regulating deubiquitinating enzymes. Protein Sci. 23, 344-353. https://doi.org/10.1002/pro.2415
- Yi, Y.J., Manandhar, G., Sutovsky, M., Li, R., Jonakova, V., Oko, R., Park, C.S., Prather, R.S., and Sutovsky, P. 2007. Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol. Reprod. 77, 780-793. https://doi.org/10.1095/biolreprod.107.061275
- Yin, S.T., Huang, H., Zhang, Y.H., Zhou, Z.R., Song, A.X., Hong, F.S., and Hu, H.Y. 2011. A fluorescence assay for elucidating the substrate specificities of deubiquitinating enzymes. Biochem. Biophys. Res. Commun. 416, 76-79. https://doi.org/10.1016/j.bbrc.2011.10.147