DOI QR코드

DOI QR Code

Reactive oxygen species-dependent down-regulation of ubiquitin C-terminal hydrolase in Schizosaccharomyces pombe

Schizosaccharomyces pombe에서의 유비퀴틴 C-말단 가수분해효소의 활성산소종 의존성 하향조절

  • Jo, Hannah (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Lim, Hye-Won (Shebah Biotech Inc.) ;
  • Kwon, Hee-Souk (Hankook Cosmo Co.) ;
  • Lim, Chang-Jin (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Park, Kwang Hark (Department of Biological Sciences, College of Natural Sciences, Kangwon National University) ;
  • Jin, Chang Duck (Department of Biological Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim, Kyunghoon (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
  • 조한나 (강원대학교 자연과학대학 생화학과) ;
  • 임혜원 (주)세바바이오텍) ;
  • 권희석 (주)한국코스모) ;
  • 임창진 (강원대학교 자연과학대학 생화학과) ;
  • 박광학 (강원대학교 자연과학대학 생명과학과) ;
  • 진창덕 (강원대학교 자연과학대학 생명과학과) ;
  • 김경훈 (강원대학교 자연과학대학 생명과학과)
  • Received : 2016.05.04
  • Accepted : 2016.06.23
  • Published : 2016.06.30

Abstract

The Schizosaccharomyces pombe $sdu1^+$ gene, belonging to the PPPDE superfamily of deubiquitinating enzyme (DUB) genes, was previously shown to encode a protein with ubiquitin C-terminal hydrolase (UCH) activity and to participate in the response against oxidative and nitrosative stresses. This work focused on the reactive oxygen species (ROS)-dependent regulation of the S. pombe $sdu1^+$ gene. UCH activities, encoded by the $sdu1^+$ gene, were attenuated in the S. pombe cells exposed to $H_2O_2$, superoxide radical-generating menadione (MD), and nitric oxide (NO)-generating sodium nitroprusside (SNP). Reduced glutathione (GSH) and its precursor N-acetylcysteine (NAC) were able to significantly enhance the UCH activities in the absence or presence of $H_2O_2$. However, the influences of both GSH and NAC on the ROS levels in the absence or presence of $H_2O_2$ were opposite to their effects on the UCH activities under the same conditions. The UCH activities in the Sdu1-overexpressing S. pombe cells were also diminished under exposure to $H_2O_2$, MD and SNP, but still remained to be higher than those in the vector control cells. In brief, it is proposed that the S. pombe $sdu1^+$ gene is regulated by ROS in a negative manner, the meaning of which largely remains elusive.

탈유비퀴틴 효소 중 PPPDE 상과에 속하는 Schizosaccharomyces pombe의 $sdu1^+$ 유전자가 유비퀴틴 C-말단 가수분해 효소 활성을 갖는 단백질을 인코딩하고, 산화적 및 일산화질소 스트레스 방어에 관여함이 이전에 밝혀진 바 있다. 예비적인 본 연구는 정상적인 및 과잉발현의 조건에서 S. pombe 유비퀴틴 C-말단 가수분해 효소 활성의 활성산소종 의존성 조절에 초점을 맞추었다. 과산화수소, 수퍼옥사이드 라디칼 생성하는 메나디온 및 일산화질소 생성하는 sodium nitroprusside (SNP)에 노출시킨 S. pombe 세포에서 유비퀴틴 C-말단 가수분해 효소 활성이 감소되었다. 환원형 글루타치온과 그 전구체인 N-acetylcysteine은 과산화수소의 존재 유무에 상관없이 유비퀴틴 C-말단 가수분해 효소 활성을 현저하게 증강시켰다. 그러나, 과산화수소의 부재 시 혹은 존재 시 활성산소종에 미치는 글루타치온과 N-acetylcysteine의 영향은 같은 조건 하에서의 유비퀴틴 C-말단 가수분해 효소 활성 패턴과 상반되었다. 과잉발현의 유비퀴틴 C-말단 가수분해 효소 활성을 보이는 재조합 플라즈미드 pYSTP를 보유하는 S. pombe 세포에서 유비퀴틴 C-말단 가수분해 효소 활성도 과산화수소, 메나디온 및 SNP에의 노출되는 조건에서 감소되었지만, 벡터 대조 세포에서 보다는 높게 유지되었다. 요약하면, S. pombe 유비퀴틴 C-말단 가수분해 효소 활성은 활성산소종에 의하여 하향조절 되지만, 그 의의는 현재로썬 알려지고 있지 않은 상태이다.

Keywords

References

  1. Bheda, A., Shackelford, J., and Pagano, J.S. 2009. Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PLoS One 4, e6764. https://doi.org/10.1371/journal.pone.0006764
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Carolan, B.J., Heguy, A., Harvey, B.G., Leopold, P.L., Ferris, B., and Crystal, R.G. 2006. Up-regulation of expression of the ubiquitin carboxyl-terminal hydrolase L1 gene in human airway epithelium of cigarette smokers. Cancer Res. 66, 10729-10740. https://doi.org/10.1158/0008-5472.CAN-06-2224
  4. Colland, F. 2010. The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem. Soc. Trans. 38(Pt 1), 137-143. https://doi.org/10.1042/BST0380137
  5. Cotto-Rios, X.M., Bekes, M., Chapman, J., Ueberheide, B., and Huang, T.T. 2012. Deubiquitinases as a signaling target of oxidative stress. Cell Rep. 2, 1475-1484. https://doi.org/10.1016/j.celrep.2012.11.011
  6. Eletr, Z.M. and Wilkinson, K.D. 2014. Regulation of proteolysis by human deubiquitinating enzymes. Biochim. Biophys. Acta 1843, 114-128. https://doi.org/10.1016/j.bbamcr.2013.06.027
  7. Iyer, L.M., Koonin, E.V., and Aravind, L. 2004. Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 3, 1440-1450. https://doi.org/10.4161/cc.3.11.1206
  8. Johnston, S.C., Riddle, S.M., Cohen, R.E., and Hill, C.P. 1999. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18, 3877-3887. https://doi.org/10.1093/emboj/18.14.3877
  9. Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174. https://doi.org/10.3109/19396368.2012.681420
  10. Kim, Y., Jo, H., and Lim, C.J. 2013. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe. Can. J. Microbiol. 59, 789-796. https://doi.org/10.1139/cjm-2013-0453
  11. Kim, J.H., Park, K.C., Chung, S.S., Bang, O., and Chung, C.H. 2003. Deubiquitinating enzymes as cellular regulators. J. Biochem. 134, 9-18. https://doi.org/10.1093/jb/mvg107
  12. Komander, D., Clague, M.J., and Urbe, S. 2009. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell. Biol. 10, 550-563. https://doi.org/10.1038/nrm2731
  13. Liu, Y., Lashuel, H.A., Choi, S., Xing, X., Case, A., Ni, J., Yeh, L.A., Cuny, G.D., Stein, R.L., and Lansbury, P.T.Jr. 2003. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10, 837-846. https://doi.org/10.1016/j.chembiol.2003.08.010
  14. Maiti, T.K., Permaul, M., Boudreaux, D.A., Mahanic, C., Mauney, S., and Das, C. 2011. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. FEBS J. 278, 4917-4926. https://doi.org/10.1111/j.1742-4658.2011.08393.x
  15. Myers, A.M., Tzagoloff, A., Kinney, D.M., and Lusty, C.J. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299-310. https://doi.org/10.1016/0378-1119(86)90028-4
  16. Ramakrishna, S., Suresh, B., and Baek, K.H. 2011. The role of deubiquitinating enzymes in apoptosis. Cell. Mol. Life Sci. 68, 15-26. https://doi.org/10.1007/s00018-010-0504-6
  17. Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D. 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397. https://doi.org/10.1146/annurev.biochem.78.082307.091526
  18. Rolfe, M., Chiu, M.I., and Pagano, M. 1997. The ubiquitin-mediated proteolytic pathway as a therapeutic area. J. Mol. Med. (Berl) 75, 5-17. https://doi.org/10.1007/s001090050081
  19. Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. https://doi.org/10.1006/abbi.1993.1222
  20. Satoh, J.I. and Kuroda, Y. 2001. Ubiquitin C-terminal hydrolase-L1 (PGP9.5) expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines, neurotrophic factors or heat stress. Neuropathol. Appl. Neurobiol. 27, 95-104. https://doi.org/10.1046/j.1365-2990.2001.00313.x
  21. Shen, H., Sikorska, M., Leblanc, J., Walker, P.R., and Liu, Q.Y. 2006. Oxidative stress regulated expression of ubiquitin Carboxylterminal Hydrolase-L1: role in cell survival. Apoptosis 11, 1049-1059. https://doi.org/10.1007/s10495-006-6303-8
  22. Todi, S.V., Winborn, B.J., Scaglione, K.M., Blount, J.R., Travis, S.M., and Paulson, H.L. 2009. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J. 28, 372-382. https://doi.org/10.1038/emboj.2008.289
  23. Tse, W.K., Eisenhaber, B., Ho, S.H., Ng, Q., Eisenhaber, F., and Jiang, Y.J. 2009. Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development. BMC Genomics 10, 637. https://doi.org/10.1186/1471-2164-10-637
  24. Wolberger, C. 2014. Mechanisms for regulating deubiquitinating enzymes. Protein Sci. 23, 344-353. https://doi.org/10.1002/pro.2415
  25. Yi, Y.J., Manandhar, G., Sutovsky, M., Li, R., Jonakova, V., Oko, R., Park, C.S., Prather, R.S., and Sutovsky, P. 2007. Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol. Reprod. 77, 780-793. https://doi.org/10.1095/biolreprod.107.061275
  26. Yin, S.T., Huang, H., Zhang, Y.H., Zhou, Z.R., Song, A.X., Hong, F.S., and Hu, H.Y. 2011. A fluorescence assay for elucidating the substrate specificities of deubiquitinating enzymes. Biochem. Biophys. Res. Commun. 416, 76-79. https://doi.org/10.1016/j.bbrc.2011.10.147