• Title/Summary/Keyword: 수소충전탱크

Search Result 28, Processing Time 0.021 seconds

Study of the Characteristics of Hydrogen-Gas Filling Process of Ultra-Light Composite Tanks for Fuel-Cell Vehicles (연료전지자동차용 초경량 복합재료 탱크의 수소 충전 특성 연구)

  • Yoo, Gye-Hyoung;Kim, Jong-Lyul;Lee, Taek-Su;Lee, Joong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.813-819
    • /
    • 2011
  • In this research, we investigated the hydrogen-gas filling characteristics of ultra-light composite tanks that have a plastic or aluminum liner inside the composite shell. The study was performed for different gas and tank temperatures. The temperature changes at various positions in the Type-4 tank during hydrogen-gas filling were monitored in order to understand the effects of the filling conditions. The results were compared with those obtained for a Type-3 tank. As the filling speed was increased, a quicker temperature rise was observed, and the temperature distribution over the entire region showed significant discrepancies.

Comparison of the Internal Pressure Behavior of Liquid Hydrogen Fuel Tanks Depending on the Liquid Hydrogen Filling Ratio (액체수소 충전 비율에 따른 액체수소 연료탱크의 내부 압력 거동 비교)

  • Dongkuk Choi;Sooyong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 2024
  • Because hydrogen has very low density, a different storage method is required to store the same amount of energy as fossil fuel. One way to increase the density of hydrogen is through liquefaction. However, since the liquefied temperature of hydrogen is extremely low at -252 ℃, it is easily vaporized by external heat input. When liquid hydrogen is vaporized, a self-pressurizing phenomenon occurs in which the pressure inside the hydrogen tank increases, so when designing the tank, this rising pressure must be carefully predicted. Therefore, in this paper, the internal pressure of a cryogenic liquid fuel tank was predicted according to the liquid hydrogen filling ratio. A one-dimensional thermodynamic model was applied to predict the pressure rise inside the tank. The thermodynamic model considered heat transfer, vaporization of liquid hydrogen, and fuel discharging. Finally, it was confirmed that there was a significant difference in pressure behavior and maximum rise pressure depending on the filling ratio of liquid hydrogen in the fuel tank.

Comparative Investigation of Convective Heat Transfer Coefficients for Analyzing Compressed Hydrogen Fueling Process (압축 수소 충전 공정 해석을 위한 대류 열전달 계수 비교 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.123-133
    • /
    • 2023
  • Commercial hydrogen fuel cell vehicles are charged by compressing gaseous hydrogen to high pressure and storing it in a storage tank in the vehicle. This process causes the temperature of the gas to rise, to ensure the safety to storage tanks, the temperature is limited. Therefore, a heat transfer model is needed to explain this temperature rise. The heat transfer model includes the convective heat transfer phenomenon, and accurate estimation is required. In this study, the convective heat transfer coefficient in the hydrogen fueling process was calculated and compared using various correlation equations considering physical phenomena. The hydrogen fueling process was classified into the fueling line from the dispenser to the tank inlet and the storage tank in the vehicle, and the convective heat transfer coefficients were estimated according to process parameters such as mass flow rate, diameter, temperature and pressure. As a result, in the case of the inside of the filling line, the convective heat transfer coefficient was about 1000 times larger than that of the inside of the storage tank, and in the case of the outside of the filling line, the convective heat transfer coefficient was about 3 times larger than that of the outside of the storage tank. Finally, as a result of a comprehensive analysis of convective heat transfer coefficients in each process, it was found that outside the storage tank was lowest in the entire hydrogen fueling process, thus dominated the heat transfer phenomenon.

High Pressure Refueling Method for HCNG Gas Supply (HCNG 가스공급을 위한 고압혼합 충전방안)

  • Kim, Sang-Min;Lee, Joong-Seong;Han, Jeong-Ok;Lee, Yeong-Cheol;Kim, Yong-Cheol;Chae, Jeong-Min;Hong, Seong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • Mixture of hydrogen and natural gas HCNG mixing equipment production and refueling experiment were performed for supply and product. Hydrogen and CNG in 30 : 70 ratio is mixing of HCNG was performed using ratio control. HCNG refueling method was calculated after reading the pressure of tank for full refuel, amount refuel. Both full refuel and amount refuel results mixed ratio 30 : 70 in the error limits of $H_2{\pm}2%$ met the criterion. HCNG composition analysis result in refueling tank using gas chromatography is satisfying the error limits in refuel tank 30 : 70 ratio were confirmed.

Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State (3차 상태방정식을 이용한 수소 충전 온도 거동 모사)

  • PARK, BYUNG HEUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.5
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.

A Study on the Strength Safety of an Aluminium Liner for a Hydrogen Fuel Storage Tank (수소연료 저장탱크용 알루미늄 라이너의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • In this study, the strength safety for 110 liter hydrogen fuel storage tank with 70MPa filling pressure has been analyzed using a FEM technique. The strength safety of a composite fuel tank in which is fabricated by an aluminum liner of 6061-T6 and carbon fiber wound composite layers of T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray has been investigated based on the criterion of a strength safety of US DOT-CFFC and Korean Standard. The FEM computed results on the strength safety of 70MPa hydrogen gas tank showed that the hydrogen fuel storage tank in which is fabricated by T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray is safe because those two carbon fibers have very similar material properties. But, the composite storage tank with a filling pressure of 70MPa in which is fabricated by T700-12K of Toray may not guaranty the strength safety, and thus this study recommends a composite hydrogen fuel tank under 60MPa.

Evaluation of Influential Factors of Hydrogen Fueling Protocol by Modeling and Simulation (모델링 및 시뮬레이션을 통한 수소충전 프로토콜 영향인자 평가)

  • CHAE, CHUNGKEUN;KANG, SUYOUN;KIM, HANNA;CHAE, SEUNGBEEN;KIM, YONGGYU
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.513-522
    • /
    • 2019
  • It is not easy to refuel quickly and safely with 70 MPa hydrogen. This is because the temperature in the vehicle tank rises sharply due to Joule-Thomson effect, etc. Thus protocols such as SAE J2601 in the United States and JPEC-S 0003 in Japan were established. However, they have the problem of over-complexity and lack of versatility by setting the preconditions for hot and cold cases and introducing a number of look-up tables. This study was conducted with the ultimate goal of developing new protocols based on complete real-time communication. Thermodynamic models were made and programs were developed for hydrogen refueling simulations. Simulation results confirmed that there are five parameters in the influencing factors of the hydrogen refueling protocol.

A Study on the Strength Safety of a Composite Hydrogen Fuel Tank for a Vehicle (차량용 복합소재 수소연료탱크의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents the strength safety of a hydrogen gas composite fuel tank, which is analyzed using a FEM based on the criterion of US DOT-CFFC and Korean Standard. A hydrogen gas composite tank in which is fabricated by an aluminum liner of 6061-T6 material and carbon fiber wound composite layers of T800-24K is charged with a filling pressure of 70MPa and a gas storage capacity of 130 liter. The FEM results indicated that von Mises stress, 255.2MPa of an aluminum liner inner tank is low compared with that of 95% yield strength, 272MPa. And a carbon fiber stress ratio of a composite fuel tank is 3.11 in hoop direction and 3.04 in helical direction. These data indicate that a carbon fiber gas tank is safe in comparison to that of a recommended criterion of 2.4 stress ratio. Thus, the proposed composite tank with 130 liter capacity and 70MPa filling pressure is usable in strength safety.

하나로 냉중성자원 진공계통의 운전 특성

  • Son, U-Jeong;Lee, Mun;Kim, Min-Su;Choe, Ho-Yeong;Han, Jae-Sam;Jo, Seong-Hwan;Heo, Sun-Ok;An, Guk-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.366-366
    • /
    • 2011
  • 냉중성자원은 하나로 반사체탱크에 위치한 수직공에 설치되어 노심에서 발생하는 열중성자를 감속재인 액체수소층을 통과시켜 냉중성자를 생산하는 설비로 수소가를 충전하고 있는 수소계통이 있으며, 21K의 극저온 액체수소/기체수소 2상(ttwo-phase)을 유지하기 위해 외부에서 유입되는 열침입을 최소화하기 위해 진공계통이 설치되어 있다. 진공계통은 수조내기기 집합체(In-Pool Assembly : IPA)의 액체수소 열사이펀, 감속재 용기 등의 냉중성자원 극저온 부풀들의 단열을 위하여 진공용기 내부진공도를 공정진공도 이하로 유지하기 위한 계통으로 고진공펌프, 진공배기탱크 및 저진공펌프의 조합으로 두 개의 진공펌프시스템과 진공박스, 배기수집탱크 및 밸브박스를 포함한 연결배관으로 설계되었다. 저진공펌프를 이용하여 대기압에서 고진공펌프 작동압력까지 도달한 후 고진공펌프를 가동하여 공정진공도 이하의 진공도를 확보하고, 고진공펌프로부터 배기되는 배출가스는 고진공펌프 후단에 설치된 진공배기탱크에 포집되며, 필요 시 저진공펌프레 의하여 배기수집탱크로 배출된다. 진공펌프시스템은 진공용기 내부의 압력이 공정진동고 이하로 유지되도록 연속적으로 가동되어 진공단열이 가능하다. 본 논문은 감속재인 수소를 액화상태로 유지하며, 공정진공도 이하로 충분히 유지되어 운전되는 진공계통의 특성을 원자로 운전 주기별로 소개하고자 한다.

  • PDF

CFD procedure of Multi-phase flow to predict the trend of Boil-off for the various filling ratio of C-Type liquefied hydrogen tank subject to sloshing motion (슬로싱에 놓인 C-Type 액화수소 탱크의 적재율에 따른 BOG 발생량 경향 예측을 위한 다상 유동 CFD 해석 절차)

  • Jin-Ho Lee;Sung-Je Lee;Se-Yun Hwang;Jang Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.213-213
    • /
    • 2022
  • 본 논문은 슬로싱(Sloshing) 거동에 놓인 극저온 액체수소 화물창의 BOG 예측을 위한 CFD 해석 절차를 다루고 있다. 특히, 적재율(Filling Ratio)에 따라 달라지는 열 유입과 그에 따른 액체수소의 기화 경향을 파악하기 위한 목적으로 수행되었다. 액체수소와 기체수소의 혼재에 의한 다상 열유동(Multiphase-Thermal flow) 특성을 반영하고 유동에 따른 강제 대류 현상을 열유속에 반영하기 위한 CFD 해석을 수행하였다. 다상 유동 모델의 정확성을 검증하기 위하여 슬로싱 실험의 압력 계측 값과 해석의 압력 값 및 자유수면(Free surface) 형상을 비교하였다. 소형 C-Type 독립형 액화수소 탱크를 대상으로 슬로싱 유동과 BOG 발생을 수치적으로 예측하였다. 해석 과정에서 VOF(Volume of fraction) 모델과 Eulerian 모델을 모두 적용하여, 액체수소에 유입되는 열 유속(Heat flux)의 예측 정확성을 비교하였다. 슬로싱 유무에 따라 액체수소에 유입되는 열 유속을 비교하여 슬로싱 유동의 포함 여부에 따른 BOG 발생량의 변화를 제시하였으며, 최종적으로 액체수소의 충전율(Filling ratio) 별로 BOG 발생량의 경향성을 제시하였다.

  • PDF