• Title/Summary/Keyword: 수소성/친수성

Search Result 86, Processing Time 0.032 seconds

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

Studies on Slip and Mechanical Properties of Thermoplastic Polyurethane Elastomer Containing Sulfuric Acid (Sulfuric acid를 도입한 열가소성 폴리우레탄 탄성체의 슬립특성 및 기계적 물성에 관한 연구)

  • Mok, Dong Youb;Shin, Hyun Deung;Kim, Dong Ho;Kim, Gu Ni;Kim, In-Soo
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.256-262
    • /
    • 2013
  • We synthesized thermoplastic polyurethane elastomer (TPU) with different contents of sulfuric acid group, and characterized their physical properties such as mechanical, thermal and grip properties. And the results were compared with carboxylic acid-introduced TPU. Wet slip, tensile strength and abrasion properties were increased by the introduction of acid group. Mechanical properties increased with increasing the acid content up to 0.3 wt%. However, wet slip was continually increased as the acid content increased due to increase of hydrophilicity of TPU.

Studies on Slip and Mechanical Properties of Thermoplastic Polyurethane Elastomer with Carboxylic acid and Nano zinc oxide (Carboxylic acid와 nano zinc oxide를 도입한 열가소성 폴리우레탄 탄성체의 슬립특성 및 기계적 물성에 관한 연구)

  • Shin, Hyun Deung;Kim, Dong Ho;Kim, Gu Ni
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • We synthesized thermoplastic polyurethane elastomer(TPU) with acid group and nano zinc oxide, and characterized their mechanical properties, thermal properties, contact angle and grip property. The effects of the zinc oxide content and size on the physical property of TPU were investigated. When the nano zinc oxide was introduced in TPU with acid group, it had excellent mechanical properties and grip by formation of hydrogen and ionic bonding. The wet slip of TPU with zinc oxide was increased continuously as ionization rate increased due to increase of hydrophilicity and ionic interaction, and mechanical properties were increased with increasing ionization rate up to 50%.

The Effects of Temperature and Denaturant on the Helix-Coil Transition of Chain-Dimer (사슬이합체의 헬릭스-코일 구조에 미치는 온도와 변성시약의 영향)

  • Kim, Young Gu;Park, Hyung Suk
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.394-400
    • /
    • 1996
  • The conformational transitions of oligopeptide -(HPPHPPP)$_n$- (H: hydrophobic amino acid, P: polar amino acid) which becomes cross linked-dimer are detected at various temperatures, pHs, ionic strengths, and the concentrations of denaturant. In this study, the transitions of oligopeptide due to denaturant, and those due to temperature are theoretically studied. Oligopeptide 20R as chain-dimer and guanidum-HCl as denaturant are used(20R, which contains 10 interchain and /or 10 intrachain electrostatic repulsions). Alpha helix-coil transitions by denaturant are very steep. This shows that the denaturations have transition states of, presumably all helical forms and random coils. The transitions by temperature are smoother than those by the concentration of denaturant. At low temperature the oligopetides which contain long helices exist more than those which contain short helices. As temperature rises, the mole fractions of the partially denatured oligopeptides increase. So the partially denatured oligopeptides are widely distributed at the transition temperature.

  • PDF

Effect of plasma etching on DLC films prepared by RF-PECVD method (RF-PECVD법에 의해 합성된 DLC 박막에 대한 plasma etching의 영향에 대한 연구)

  • Oh, Chang-Hyun;Yun, Deok-Yong;Park, Yong-Seob;Cho, Hyung-Jun;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.315-315
    • /
    • 2007
  • 본 논문에서는 DLC (Diamond-like carbon)박막이 가지는 높은 경도, 낮은 마찰계수, 전기적 절연성, 화학적 안정성 등의 특성을 이용하여, 리소그래피를 위한 resist나 hard coating물질로써 응용하기 위해, DLC 박막의 에칭에 관한 연구를 진행하였다. DLC 박막의 합성 과 에칭은 13.56 MHz RF plasma enhanced vapor deposition technique를 통해 이루어졌으며, DLC 박막은 150 W의 RF Power에서 메탄 $(CH_4)$과 수소$(H_2)$ 가스를 이용하여 약 300 nm의 두께로 제작되었으며, DLC박막의 에칭은 RF power의 변화 (50~250 W)와 산소 $(O_2)$가스의 유량변화 (5~25 sccm)에 따라 실시하였다. 에칭 되어진 DLC 박막의 표면 특성들은 AFM (atomic force microscopy)과 contact angle 장치를 사용하여 측정되었고, 측정된 결과로써 DLC 박막은 RF power와 산소 가스의 유량이 높을수록 etching rate는 증가하였고, 박막의 표면은 거칠어졌으며, 결국 DLC 표면에서는 산소에 의한 결합의 증가로 인해 친수성을 나타내었다.

  • PDF

Characterization of SPAES Composite Membrane Using Silane Based Inorganics (실란계 복합화 무기물을 이용한 SPAES 복합막의 특성평가)

  • Woo, Chang Hwa;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • In this study, we synthesize novel silane based inorganics for preparation of the polymer electrolyte membrane with high proton conductivity under high temperature condition and developed membranes are characterized. SPAES, hydrocarbon based polymer are synthesized and used as main polymeric material. We used sol-gel method to prepare inorganic material with high performance using silica, phosphate and zirconium. Three types of inorganics were prepared by control of the mole ration of each component. As a result of EDX analysis, the inorganic materials are well dispersed in the polymer membrane. The water uptake of the composite membrane is increased by introduction of the hydrophilic inorganic material in the membrane. When the content of the zirconium in the membrane is increased, the proton conductivity of the composite membrane shows the higher value than pure SPAES membrane at the high temperature. And the silica based inorganics effect to increase the proton conductivity under low temperature condition.

Low-humidifying Nafion/TiO2 Composite Membrane Prepared via in-situ Sol-gel Process for Proton Exchange Membrane Fuel Cell (In-situ 졸-겔 법을 이용한 저가습 작동용 수소 이온 교환막 연료전지용(PEMFC) 나피온/TiO2 복합막)

  • Choi, Beomseok;Ko, Youngdon;Kim, Whajung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • $Nafion/TiO_2$ composite membranes were prepared via an in-situ sol-gel process with different immersing periods from 1 day to 7 days for the low humidifying proton exchange membrane fuel cell. As the immersing time increased, the $TiO_2$ content within the Nafion membrane increased. The contact angle decreased with the increased $TiO_2$ content in the composite membrane due to the increased hydrophilicity. The water uptake and proton conductivity reached to the highest level for 4 day immersing period, then decreased as the immersing period increased. A 7 days of immersing time was shown to be too long because too much $TiO_2$ aggregates were formed on the membrane surface as well as interior of the membrane, interfering the proton transfer from anode to cathode. Cell performance results were in good agreement with those of the water uptake and proton conductivity; current densities under a relative humidity (RH) of 40% were 0.54, 0.6, $0.63A/cm^2$ and $0.49A/cm^2$ for the immersing time of 1, 3, 4 and 7 days, respectively at a 0.6 V. The composite membrane prepared via the in-situ sol-gel process exhibited the enhancement in the cell performance under of RH 40% by a maximum of about 66% compared to those of using the recasting composite membrane and Nafion 115.

Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell (블록 및 랜덤 가교 술폰화 폴리이미드막의 제조 및 연료전지특성 평가)

  • Lee, Young-Moo;Park, Chi-Hoon;Lee, Chang-Hyun;Chung, Youn-Suk
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.241-251
    • /
    • 2006
  • In this study, crosslinked copolyimides with random (r-) and block (b-) structure were fabricated using N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and pentanediol as crosslinkers. Linear r- and b-sulfonated copolyimides were also fabricated for comparison. Ion exchange capacities of r- and b-copolyimides were very similar to each other owing to their strong dependence of sulfonic acid content. The physical crosslinking via dimerization of carboxylic acid groups induced a reduced average interchain distance in b-copolyimide without crosslinkers. Consequently, its water uptake and methanol permeability were lower than those of r-sulfonated copolyimides. Simultaneously, the reduced interchain distance increased the content of fixed-charged ions per unit volume. The high fixed-charged ion density contributed to an enhancement of proton conductivity In the b-sulfonated copolyimide. Crosslinking caused the reduction of average interchain distance between polymer chains irrespective of types of crosslinker and polymer structure, leading to low methanol permeability. On the contrary, their proton conductivity was improved owing to formation of effective hydrophilic channels responsible for proton conduction. In particular, this trend was observed in r-copolyimide containing a fixed charged ion.

Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis (양이온 교환막 수전해용 산화전극 확산층의 표면 특성 제어를 통한 전기화학적 성능 개선 연구)

  • Lee, Han Eol;Linh, Doan Tuan;Lee, Woo-kum;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.332-339
    • /
    • 2021
  • Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.

Effect of Cosurfactant on Phase Equilibrium and Dynamic Behavior in Ternary Systems Containing Nonylphenol Ethoxylate Surfactant, Water and Hydrocarbon Oil (보조계면활성제가 노닐페놀 에톡실레이트 계면활성제, 탄화수소 오일, 물로 이루어진 삼성분계의 상평형 및 동적거동에 미치는 영향)

  • Lim, HeungKyoon;Lee, Seul;Mo, DaHee;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.969-979
    • /
    • 2012
  • In this study, the effects of cosurfactant on phase equilibrium and dynamic behavior were studied in systems containing nonylphenol ethoxylate (NP) surfactant solutions and nonpolar hydrocarbon oils. All the cosurfactants used during this study such as n-pentanol, n-octanol and n-decanol acted as a hydrophobic additive and the hydrophobic effect was found to increase with both increases in chain length and amount of addition of a cosurfactant. Dynamic behavior studies under hydrophilic conditions showed that the solubilization of hydrocarbon oil by NP micellar solution is controlled by an interface-controlled mechanism rather than a diffusion-controlled mechanism. Both spontaneous emulsification of water into oil phase and expansion of oil drop were observed under lipophilic conditions because of diffusion of surfactant and water into oil phase. Under conditions of a three phase region including a middle-phase microemulsion, both rapid solubilization and emulsification of oil into aqueous solutions were found mainly due to the existence of ultralow interfacial tension.