• 제목/요약/키워드: 수성가스전환반응기

검색결과 41건 처리시간 0.023초

Aspen plus 전산모사를 통한 연료전지용 컴팩트 연료개질기 열교환망 최적화 (Optimization of thermal network of compact fuel processor for PEMFCs using Aspen plus simlation)

  • 정운호;구기영;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.207-207
    • /
    • 2009
  • Aspen plus는 Aspentech사에서 개발한 공정모사용 프로그램으로서 다양한 화학종의 열역학적 자료를 기반으로 공정설계, 공정최적화, 공정모니터링 등 공정개발에 활용되고 있다. 연료개질기는 수증기 개질반응, 수성가스전이반응, 선택적화학반응으로 구성된 소규모 수소생산공정에 해당된다. 따라서 Aspen 전산모사를 통해 다양한 조건에서의 운전결과를 모사하여 개질기에 미치는 영향을 분석함으로써 운전조건을 최적화 할 수 있다. 연료개질기의 성능에 영향을 미치는 주요인자는 주로 수증기개질 촉매층 출구온도 및 수증기/탄소 비이다. 수증기개질 촉매층의 출구온도를 $660{\sim}740^{\circ}C$로 변화시키면서 개질가스의 조성, 카본 전환율, 개질효율 등을 비교 분석하였다. 또한 수증기/탄소 비를 3~5의 범위에서 변화시키면서 영향을 살펴보았다. 수증기개질 촉매층의 온도가 높을수록 수소생산량이 증가에 따른 효율 증가가 나타났으며 수증기/탄소 비가 증가할 경우에도 개질효율에 긍정적인 영향을 미치는 것을 확인하였다. 하지만 실제 개질기의 운전에서는 소재의 제약에 따라 운전 온도에 제약이 있으며 수증기/탄소비의 증가 역시 개질기의 부피 증가로 이어지는 단점이 있다는 것을 고려해야 한다. 따라서 반응기 재질, 크기, 운전온도와 개질효율과의 상관관계를 파악하여 개질기의 특성을 최적화 하여야 한다.

  • PDF

철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구 (Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst)

  • 양정일;천동현;박지찬;정헌
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.358-364
    • /
    • 2012
  • 철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 메커니즘과 반응 속도식을 5 채널 고정층 반응기를 이용하여 조사하였다. 실험 조건은, 반응물 합성가스 $H_2$/CO 비 0.5~2, 반응물 공급 유량 60~80 ml/min, 반응 온도 $255{\sim}275^{\circ}C$로서 반응 압력은 1.5 MPa을 유지하였다. F-T 합성 반응의 반응 속도식($r_{FT}$)은 반응 속도 결정 단계로서 분자로 흡착된 CO와 기상의 수소 분자와의 반응을 바탕으로 하는 Eley-Rideal 반응 메카니즘을 통해 계산되었고, WGS 반응의 반응 속도식($r_{WGS}$)은 formate 중간체 생성 반응을 반응 속도 결정 단계로 가정하여 결정되었다. 실험 결과, F-T 합성 반응의 반응 속도식과 WGS 반응의 반응 속도식은 각각 탄화수소 생성과 $CO_2$ 생성에 대한 반응 속도 실험값을 잘 모사하였고, 또한 power law에 근거한 CO 전환 반응에 대한 반응 속도식도 실험값과 잘 일치하였다. 이처럼, 각각의 반응 메카니즘을 바탕으로 도출된 반응 속도식($r_{FT}$, $r_{WGS}$, $-r_{CO}$)은 실험값과 여러 가지 기존 문헌에서 보고된 반응 속도식 모델과 잘 일치하였다.

석탄 가스화에 의한 수소 제조공정 개념설계 (Conceptual design for the Production of Hydrogen in Coal Gasification System)

  • 이윤주;나기풍;박문주;이상득;홍석인;문동주
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.258-261
    • /
    • 2008
  • 상용공정 모사기인 PRO-II를 이용하여 석탄 가스화에 의한 수소 제조공정 개념설계를 수행 하였다. 이 공정은 공기분리(ASU), 석탄가스화, 가스정제, 고온 WGS 반응, 저온 WGS 반응, 수분제거, $H_2$분리, $CO_2$ 분리, $CH_4$ 분리(PSA) 등으로 구성되어 있다. 가스화기의 모사조건은 온도 $1200{\sim}1500^{\circ}C$, 압력 $15{\sim}30atm$, 공급몰비 C:$H_2O$:$O_2$=1:0.5$\sim$1:0.25$\sim$0.5로 하였으며, 정제공정의 온도와 압력은 각각 $550^{\circ}C$, 24.5atm으로 하였다. 생성된 합성가스는 WGS(HTS($400^{\circ}C$, 24atm), LTS($250^{\circ}C$, 23.5atm)) 반응을 거쳐 고순도 수소로 분리정제된다. 석탄을 10ton/day으로 공급하였을 때, 804.0kmol/day의 수소가 생성되었으며, 이때 가스화기 조건은 $1500^{\circ}C$, 25atm, 공급몰비 C:$H_2O$:$O_2$ = 1:0.58:0.43이었다.

  • PDF

연료 개질기용 고성능 수성가스 전환반응 촉매 개발 (Development of High Performance WGS Catalyst for Fuel Processor Applications)

  • 이윤주;류종우;김대현;최은형;노원석;이상득;문동주
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.451-454
    • /
    • 2006
  • WGS reaction over Mo2C and ceria based catalysts was investigated to develop an alternative commercial Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station. The Mo2C catalysts were prepared by a temperature programmed method and the various metal supported cerium oxide catalysts were prepared by an Impregnation method. The catalysts were characterized by the N2 physisorption, Co chemisorption, XRD, TEM and TPR. It was found that Mo2C and 0.2wt% Pt-40wt%, Ni/CeO2 catalysts had higher activity and stability than the Cu-Zn/Al203 above $260^{\circ}C$. Moreover, CO conversion of more than 85% was observed at $280{\sim}300^{\circ}C$. But all catalysts were deactivated during the thermal cycling runs. The results suggest that these catalysts are an attractive candidate for the alternative Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station applications.

  • PDF

1 Nm3/h급 연료 변환시스템에서 메탄의 자열 개질반응 (Autothermal Reforming Reaction at Fuel Process Systems of 1Nm3/h)

  • 구정분;신장식;양정민;이종대
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.802-807
    • /
    • 2012
  • 본 연구에서는 메탄으로부터 합성가스를 만드는 자열 개질(Autothermal reforming)반응 특성을 Ni (15 wt%)-Ru (1 wt%)/$Al_2O_3$-MgO 금속모노리스 촉매체와 전기 발열식 촉매를 사용하여 조사하였다. 자체 가동 형 반응기는 자열 개질 반응기에 $700^{\circ}C$ 반응물을 공급하는데 걸리는 start-up 시간이 2분 이내였다. 반응물의 $O_2/CH_4$$H_2O/CH_4$ 비가 메탄의 전환율과 반응기의 온도 분포에 미치는 영향은 매우 크다. 반응기의 온도는 $H_2O/CH_4$ 비가 감소할수록 흡열반응에서 발열반응으로 전환되어 증가한다. 또한 $H_2O/CH_4$ 비가 증가함에 따라 수성가스화 전이반응에 의하여 생성물 중에 $CO_2$양이 증가한다. $GHSV=10,000\;h^{-1}$, 반응물 조성($H_2O/CH_4=0.6$$O_2/CH_4=0.5$)의 자열 개질반응에서, 97%의 메탄의 전환율을 얻었으며, 반응기의 온도는 $600^{\circ}C$로 유지되었다. 이 반응조건에서 170 cc 금속모노리스 촉매체를 충진한 반응기에서 자열개질 반응으로 생성된 최대 합성가스의 유량은 $0.94\;Nm^3/h$ 이었다.

석탄가스화를 이용한 수소생산 기술현황 및 프로젝트 분석 (A Study on Technology Status and Project of Hydrogen Production from Coal Gasificiation)

  • 고승모;장호창
    • 한국가스학회지
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2023
  • 석탄가스화는 석탄을 불완전 연소하여 수소와 일산화탄소로 이루어진 합성가스를 생성하는 공정이다. 기 존 석탄 연소와 달리 질소 산화물이나 황 산화물이 배출되지 않고 미세먼지 발생량이 적어 석탄을 청정하게 이용할 수 있으며 합성가스를 통해 부가적인 화학물질을 생산할 수 있다. 석탄가스화는 합성가스 생산방식에 따라 석탄가스화복합화력발전(Integrated Gasification Combined Cycle, IGCC), 플라즈마 석탄가스화, 지하석탄 가스화(Underground Coal Gasification, UCG)로 분류된다. 최근에는 합성가스의 수소를 활용하기 위하여 일산화탄소를 수소로 전환하는 수성가스전환(Water Gas Shift, WGS) 반응기와 이산화탄소를 포집하는 설비를 결합하는 사례가 늘고 있다. 본 연구에서는 석탄가스화와 합성가스를 이용한 수소 생산 방법에 대하여 정리하였으며 현재 진행되고 있는 석탄가스화를 이용한 수소 생산 프로젝트를 조사하였다.

삼화 원탄과 무회분탄의 촉매(K2CO3) 가스화 반응성 비교 연구 (Comparative Studies on K2CO3-based Catalytic Gasification of Samhwa Raw Coal and Its Ash-free Coal)

  • 공용진;임정환;임영준;전동혁;이시훈;유지호;이영우
    • 청정기술
    • /
    • 제20권3호
    • /
    • pp.218-225
    • /
    • 2014
  • 석탄의 가스화는 촉매 도입 시 온순 조건에서 가능하나, 석탄 내 회분에 의한 비활성화에 의해 반복적인 촉매 활용이 힘들다. 이에 본 연구에서는 삼화 원탄에서 회분을 제거하여 삼화 무회분탄(ash-free coal, AFC)을 제조한 후 가스화 반응성을 원탄과 비교하여 알아보았다. 우선 원탄을 대상으로 고정층 반응기에서 수증기 공급량, 공간 속도(space velocity), 온도 및 촉매를 변수로서 가스화 조건을 결정하였다. 고체상 혼합법으로 다양한 촉매 도입 시, 유동성을 갖는 $K_2CO_3$가 가장 높은 활성을 보였다. 무회분탄은 원탄보다 낮은 반응성을 보였으며, 이는 용매(1-methylnaphthalene, 1-MN)를 이용한 고온 추출 및 건조 공정 중에 소모된 산소 기능기 함량과 증가된 탄화도(carbonization)에 기인한다. $K_2CO_3$ 가 혼합된 무회분탄의 반응성은 급격히 증가하여 낮은 온도 ($700^{\circ}C$)에서도 높은 전환율을 보였다. 이때 $H_2/CO$$CO_2/CO$ 비율도 증가하는데, 이는 촉매에 의해 수성가스전환(water-gas shift) 반응이 활성화됨에 기인한다. 본 연구에서는 무회분탄의 저온 촉매 가스화 반응을 통해 석탄 가스화 공정의 경제성이 개선될 수 있음을 확인하였다.

바이오가스 개질을 위한 글라이딩 아크 플라즈마 개질 시스템 개발 (Development of a Gliding Arc Plasma Reforming System to Produce Hydrogen Form Biogas)

  • 김성천;양윤철;전영남
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.423-429
    • /
    • 2009
  • 본 연구의 목적은 바이오가스를 이용하여 고농도 수소 생산과 CO 제거가 가능한 글라이딩아크 플라즈마 개질 시스템의 개발이다. 이를 위하여 수성가스 전이반응기는 수증기 주입량 변화,촉매층 온도 변화에 대하여, 선택적 산화반응기는 촉매층 온도변화, 공기주입량에 대하여 실험을 진행하였다. 기준조건은 S/C 비 3, 촉매층 온도 $700^{\circ}C$, 전체가스량 16 L/min, 입력전력 2.4 kW, 바이오가스 구성비($CH_4$ : $CO_2$ ) 6 : 4이다. 이때의 실험결과는 HTS의 최적조건은 S/C비 3, 반응온도 $500^{\circ}C$, LTS의 최적조건은 S/C 비 2.9, 반응온도 $300^{\circ}C$이다. 또한 PROX I단의 최적조건은 각각 공기유입량 300 mL/min, $190^{\circ}C$, PROX II단의 최적조건은 공기유입량 200 mL/min, $190^{\circ}C$을 나타내었다. 반응기를 모두 지난 후의 합성가스는 $H_2$ 수율 55%, $CH_4$ 전환율 97%, $CO_2$ 전환율 97%, CO 선택도는 0%로 바이오가스를 개질하여 생성된 합성가스는 높은 수율을 나타내며, CO 선택도는 0%를 나타내었다.

300MW 급 IGCC Power Plant $CO_2$ 제거공정의 Case Studies 및 Plant 성능 영향 분석 ($CO_2$ Removal Process Case Studies and Plant Performance Analysis for 300MW IGCC Power Plant)

  • 전진희;유정석;백민수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.71.2-71.2
    • /
    • 2011
  • 300MW 급 태안 IGCC 가스화 플랜트 및 기존 발전소에 CCS 를 설치할 경우에 대해 기술 타당성 검증을 목적으로 CCS 모델링을 수행하였다. CCS Case Studies 는 플랜트 운전부하에 따른 $CO_2$ 제거율, $H_2S$ 제거율, 소모동력 범위 등 플랜트 성능을 예측할 수 있다. Case Studies 결과를 활용하여 설계된 CCS 설비 용량이 운전범위에 적합한지를 판단할 수 있고 과잉 설계되었을 경우 플랜트 건설비를 절감할 수 있다. IGCC 가스화 플랜트에서 생산되는 합성가스의 $CO_2$ 분압, 목표 $CO_2$ 제거율, 경제성을 기준으로 적합한 CCS 공정을 판단한 결과 Selexol 공정이 선정되었다. Selexol 공정은 고압, 고농도의 산성가스 제거에 적합하며 다른 물리적 용매인 Rectisol 공정에 비해 건설비용이 경제적이고 화학 흡수제인 아민과 비교하여 운전 온도 범위가 넓다. CO, $H_2O$$CO_2$, $H_2$ 로 전환하는 Water Gas Shift Reaction (WGSR) 공정은 Co/Mo 촉매 반응기로 구성되었고 Selexol 공정은 $H_2S$ Absorber, $H_2S$ Stripper, $CO_2$ Absorber, $CO_2$ Flash Drum 로 구성되었다. WGSR+Selexol 모델링은 Wet Scrubber 후단의 합성가스 (40.5 bar, $136{\sim}139^{\circ}C$) 를 대상으로 하였다. WGSR+Selexol 공정 운전 조건 변화 [Process Design Case(PDC), Equipment Design Case(EDC), Turndown Design Case(TDC)] 에 따른 플랜트 모델링 결과를 비교분석 하였다. 주요 분석 내용은 WGSR 설비에서의 CO 의 $CO_2$ 전환 효율, Selexol 설비에서 $CO_2$ 제거 효율, $H_2S$ 제거 효율이다. 모델링 결과 WGSR 설비에서의 CO 의 $CO_2$ 로의 전환율 99.1% 이상, Selexol 설비에서 $CO_2$ 제거율은 91.6% 이상, $H_2S$ 제거율 100%이었다. CCS 설비 설치에 따른 플랜트 성능 영향을 분석하기 위해서 CCS 설비의 Chiller, Compressor, Pump 소비동력을 계산하였다. 모델링 결과 Chiller 는 2.6~8.5 MWth, Compressor 는 3.0~9.6 MWe, Pump 는 1.4~3.0 MWe 범위 이었다. 플랜트 로드가 50%인 TDC 소모동력은 플랜트 로드가 100%인 PDC 소모동력의 절반 수준이었다. 합성가스를 WGS+Selexol 공정을 통해 수소가스로 전환시키면 가스터빈 연료가스의 Lower Heating Value (LHV) 값이 평균 11.5% 감소하였다.

  • PDF

파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산 (SNG Production from CO2-Rich Syngas in a Pilot Scale SNG Process)

  • 강석환;류재홍;김진호;김효식;유영돈;김준우;고동준;강용
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.420-424
    • /
    • 2019
  • 포항산업과학연구원(RIST, Research Institute of Industrial Science & Technology)-고등기술연구원(IAE, Institute for Advanced Engineering)에서 제안한 합성천연가스(Synthetic Natural Gas, SNG) 제조공정(3개의 단열반응기와 1개의 등온반응기로 구성됨)에서, 합성가스와 함께 스팀을 공급함으로써 메탄화반응과 수성가스전환반응을 동시에 반응시켜 촉매층의 온도와 촉매 비활성화를 제어하였다. SNG 공정개발을 위해 본 연구에서는, 포항산업과학연구원에서 제조한 니켈계 촉매를 사용하여 낮은 $H_2/CO$ 비($CO_2$ 22% 포함) 조건에서의 메탄화반응 특성을 평가하였다. 운전조건(1차 단열반응기의 $H_2O/CO$ 비, 4차 등온반응기의 운전온도 범위 등)은 이전의 연구 결과를 반영하였으며, 동일한 조건을 유지하면서 파일럿 규모의 SNG 공정을 운전하였다. 그 결과, 파일럿 규모의 SNG 공정은 안정적으로 운전되었으며, CO 전환율 100%, $CH_4$ 선택도는 96.9% 그리고 $CH_4$ 생산성은 $660ml/g_{cat}{\cdot}h$의 값을 얻었다.