DOI QR코드

DOI QR Code

SNG Production from CO2-Rich Syngas in a Pilot Scale SNG Process

파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산

  • Kang, Suk-Hwan (Plant Engineering Center, Institute for Advances Engineering) ;
  • Ryu, Jae-Hong (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kim, Jin-Ho (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kim, Hyo-Sik (Plant Engineering Center, Institute for Advances Engineering) ;
  • Yoo, Young-Don (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kim, Jun-Woo (Research Institute of Industrial Science and Technology (RIST)) ;
  • Koh, Dong-Jun (Research Institute of Industrial Science and Technology (RIST)) ;
  • Kang, Yong (Chungnam National University)
  • 강석환 (고등기술연구원 플랜트엔지니어링센터) ;
  • 류재홍 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김진호 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김효식 (고등기술연구원 플랜트엔지니어링센터) ;
  • 유영돈 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김준우 (포항산업과학연구원) ;
  • 고동준 (포항산업과학연구원) ;
  • 강용 (충남대학교 응용화학공학과)
  • Received : 2019.03.03
  • Accepted : 2019.04.05
  • Published : 2019.06.01

Abstract

In SNG (synthetic natural gas) process by proposed RIST(Research Institute of Industrial Science & Technology)-IAE(Institute for Advanced Engineering) (including three adiabatic reactors and one isothermal reactor), the methanation reaction and water gas shift (WGS) reaction take place simultaneously, and the supply of steam with syngas might control the temperature in catalyst bed and deactivate the catalyst. In this study for development of SNG process, the characteristics of the methanation reaction with a Ni-based catalyst by prepared RIST and using a low $H_2/CO$ mole ratio (including $CO_2$ 22%) are evaluated. The operating conditions ($H_2O/CO$ ratio of the $1^{st}$ adiabatic reactor, operating temperature range of $4^{th}$ isothermal reactor, etc.) were reflected the results from previous studies and in the same condition a pilot scale SNG process is carried out. As a results, the pilot scale SNG process is stable and the CO conversion and $CH_4$ selectivity are 100% and 96.9%, respectively, while the maximum $CH_4$ productivity is $660ml/g_{cat}{\cdot}h$.

포항산업과학연구원(RIST, Research Institute of Industrial Science & Technology)-고등기술연구원(IAE, Institute for Advanced Engineering)에서 제안한 합성천연가스(Synthetic Natural Gas, SNG) 제조공정(3개의 단열반응기와 1개의 등온반응기로 구성됨)에서, 합성가스와 함께 스팀을 공급함으로써 메탄화반응과 수성가스전환반응을 동시에 반응시켜 촉매층의 온도와 촉매 비활성화를 제어하였다. SNG 공정개발을 위해 본 연구에서는, 포항산업과학연구원에서 제조한 니켈계 촉매를 사용하여 낮은 $H_2/CO$ 비($CO_2$ 22% 포함) 조건에서의 메탄화반응 특성을 평가하였다. 운전조건(1차 단열반응기의 $H_2O/CO$ 비, 4차 등온반응기의 운전온도 범위 등)은 이전의 연구 결과를 반영하였으며, 동일한 조건을 유지하면서 파일럿 규모의 SNG 공정을 운전하였다. 그 결과, 파일럿 규모의 SNG 공정은 안정적으로 운전되었으며, CO 전환율 100%, $CH_4$ 선택도는 96.9% 그리고 $CH_4$ 생산성은 $660ml/g_{cat}{\cdot}h$의 값을 얻었다.

Keywords

References

  1. Nagase, S., Takami, S., Hirayama, A. and Hirai, Y., "Development of a High Efficiency Substitute Natural Gas Production Process," Catal. Today, 45(1), 393-397(1998). https://doi.org/10.1016/S0920-5861(98)00273-9
  2. Kopyscinski, J., Schildhauer, T. J. and Biollaz, S. M. A., "Production of Synthetic Natural Gas (SNG) from Coal and Dry Biomass A Technology Review from 1950 to 2009," Fuel, 89(8), 1763-1783(2010). https://doi.org/10.1016/j.fuel.2010.01.027
  3. Kang, S. H., Kim, J. H., Kim, H. S., Ryu, J. H., Yoo, Y. D. and Kim, K. J., "Catalytic Performance for the Production of Synthetic Natural Gas (SNG) on the Commercial Catalyst in Low Hydrogen Concentration; Influence of Steam and $CO_2$," Clean Technol., 20(1), 57-63(2014). https://doi.org/10.7464/ksct.2014.20.1.057
  4. Gassner, M. and Marechal, F., "Thermo-economic Process Model for Thermochemical Production of Synthetic Natural Gas (SNG) from Lignocellulosic Biomass," Biomass and Bioenergy, 33(11), 1587-1604(2009). https://doi.org/10.1016/j.biombioe.2009.08.004
  5. Kang, S. H., Bae, J. W., Sai Prasad, P. S., Oh, J. H., Jun, K. W., Song, S. L. and Min, K. S., "Influence of Ga Addition on the Methanol Synthesis Activity of Cu/ZnO Catalyst in the Presence and Absence of Alumina," J. Ind. Eng. Chem., 15(5), 665- 669(2009). https://doi.org/10.1016/j.jiec.2009.09.041
  6. Kang, S. H., Woo, K. J., Bae, J. W., Jun, K. W. and Kang, Y., "Hydrogenation of CO on Supported Cobalt ${\gamma}$-$Al_2O_3$ Catalyst in Fixed Bed and Slurry Bubble Column Reactors," Korean J. Chem. Eng., 26(6), 1533-1538(2009). https://doi.org/10.1007/s11814-009-0260-1
  7. Haldor Topsoe, "From Coal to Substitute Natural gas Using TREMP," Technical report, Haldor Topsoe(2008).
  8. Kim, J. H., Kang, S. H., Ryu, J. H., Lee, S. K., Kim, S. H., Kim, M. H., Lee, D. Y., Yoo, Y. D., Byun, C. D. and Lim, H. J., "Operating Characteristics of 1 $Nm^3$/h Scale Synthetic Natural Gas(SNG) Synthetic Systems," Korean Chem. Eng. Res., 49(4), 491-497(2011). https://doi.org/10.9713/kcer.2011.49.4.491
  9. Kim, S. H., Yoo, Y. D., Kang, S. H., Ryu, J. H., Kim, J. H., Kim, M. H., Koh, D. J., Lee, H. J., Kim, K. J. and Kim, H. T., "Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor," Clean Technol., 19(2), 156-164(2013). https://doi.org/10.7464/ksct.2013.19.2.156
  10. Hoehlein, B., Menzer, R. and Range, J., "High Temperature Methanation in the Long-distance Nuclear Energy Transport System," App. Catal., 1(3), 125-139(1981). https://doi.org/10.1016/0166-9834(81)80001-2
  11. Vitasari, C. R., Jurascik, M. and Ptasinski, K. J., "Exergy Analysis of Biomass-to-synthetic Natural Gas (SNG) Process via Indirect Gasification of Various Biomass Feedstock," Energy, 36(6), 3825-3837(2011). https://doi.org/10.1016/j.energy.2010.09.026
  12. Rabou, P. L. M. and Bos, L., "High Efficiency Production of Substitute Natural Gas from Biomass," App. Catal. B: Environmental, 111-112, 456-460(2012). https://doi.org/10.1016/j.apcatb.2011.10.034
  13. Meijden, C. M., Veringa, H. J. and Rabou, P. L. M., "The Production of Synthetic Natural Gas (SNG): A Comparison of three Wood Gasification Systems for Energy Balance and Overall Efficiency," Biomass and Bioenergy, 34(3), 302-311(2010). https://doi.org/10.1016/j.biombioe.2009.11.001
  14. Mangena, S. J., Bunt, J. R., Waanders, F. B. M. and Baker, G., "The Production of Synthetic Natural Gas (SNG): Identification of Reaction Zones in a Commercial Sasol-Lurgi Fixed Bed Dry Bottom Gasifier Operating on North Dakota Lignite," Fuel, 90(1), 167-173(2011). https://doi.org/10.1016/j.fuel.2010.08.013
  15. Tian, D., Liu, Z., Li, D., Shi, H., Pan, W. and Cheng, Y., "Bimetallic Ni-Fe Total-methanation Catalyst for the Production of Substitute Natural Gas Under High Pressure," Fuel, 104, 224-229(2013). https://doi.org/10.1016/j.fuel.2012.08.033
  16. Bassano, C., Deiana, P., Pacetti, L. and Verdone, N., "Integration of SNG Plants with Carbon Capture and Storage Technologies," Fuel, 161(1), 355-363(2015). https://doi.org/10.1016/j.fuel.2015.08.059
  17. Baik, J. H., Yoo, Y. D., Kang, S. H., Koh, D. J., Kim, J. H., Kim, S. H. and Ryu, J. H., "Apparatus and Method for Producing Synthetic Natural Gas Using Synthesis Gas of low $H_2$/CO Ratio," KR. Patent No. 1020120153905(2012).
  18. Kim, J. H., Kang, S. H., Young D. Y., Baik, J. H. and Koh, D. J., "Methanation for SNG Production at Low $H_2$/CO Ratio; $H_2O$ Effect," Theories and Applications of Chemical Engineering, 17(2), 1688(2011).
  19. Kim, J. H. Ryu, J. H., Kang, S. H., Yoo, Y. D., Kim, J. W., Go, D. J., Jung, M. and Lee, J. M., "Catalytic Performance for the Production of $CH_4$-rich Synthetic Natural Gas (SNG) on the Commercial Catalyst; Influence of Operating Conditions)," Clean Technol., 24(2), 99-104(2018). https://doi.org/10.7464/KSCT.2018.24.2.099