The water-gas shift reaction is the subsequent step using steam for hydrogen enrichment and H2/CO ratio-controlled syngas from gasification. In this study, a water-gas shift reaction was performed using syngas from an RPF gasification system. The water-gas shift using a catalyst was performed in a laboratory-scale tube reactor with a high temperature shift (HTS) and a low temperature shift (LTS). The effects of the reaction temperature, steam/carbon ratio, and flow rate on H2 production and CO conversion were investigated. The operating temperature was 250-400℃ for the HTS system and 190-220℃ for the LTS system. Steam/carbon ratios were between 1.5 and 3.5, and the composition of reactant was CO : 40 vol%, H2 : 25 vol%, and CO2 : 25 vol%. The CO conversion and H2 production increased as the reaction temperature and steam/carbon ratio increased. The CO conversion and H2 production decreased as the flow rate increased due to reduced retention time in the catalyst bed.
Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
한국신재생에너지학회:학술대회논문집
/
2009.06a
/
pp.840-843
/
2009
폐자동차의 최종처분 과정에서 발생하는 자동차 파쇄 폐기물(Automobile Shredder Dust)은 대부분이 고분자 화합물로 높은 발열량을 가지고 있다. 또한 할로겐족 원소가 포함된 난연성 고분자류가 많아 다이옥신의 생성 우려가 높은 고분자류와 다이옥신 생성의 촉매 역할을 할 수 있는 금속성분이 많이 함유되어 있어 가스화용융시스템에 적용하여 처리하기에 매우 적합한 폐기물이다. 본 연구에서는 ASR의 가스화 용융 시설에서 고농도 CO를 함유한 합성가스를 수성가스전환반응(Water Gas Shift reaction, WGS)을 이용하여 수소의 수율을 높이는 기술을 제시하였다. 가스화 용융 설비에서 배출되는 합성가스 조성을 기준으로 적합한 고정층 WGS 반응기를 설계하고, 고온 촉매(KATALCO 71-5M)와 저온 촉매(KATALCO 83-3X)를 사용하여 실험하였다. 수성가스 반응 후의 가스 조성은 온도가 상승할수록 일산화탄소가 줄어들고 이에 따라 수소와 이산화탄소 발생량이 증가 되어 고온 촉매를 사용했을 경우 일산화탄소 전환율 ($1-CO_{out}/CO_{in}$)은 55.6에서 95.8%까지 상승하였다. 동일한 온도조건에서는 촉매에 관계없이 $CO/H_2$가 감소할수록 전환율도 감소하는 경향을 보였지만 동일한 합성가스 조성에서 일산화탄소 전환율을 비교하면 저온 촉매가 고온 촉매보다 매우 우수함을 알 수 있었다.
일산화탄소를 수소로 변환하는 수성가스전환반응(WGSR)은 수소 생산, 연료개질 시스템뿐만 아니라 암모니아 제조, 제철소 제련과정등 일선 산업현장에서 널리 활용되고 있다. 상용공정에서의 WGS반응은 두 단계의 반응기(HTS/LTS)에서 각각 Fe/Cr, Cu/Zn기반 촉매를 사용하여 이루어진다. 하지만 이러한 촉매들은 공기중 자연발화성이 있고 사용전 환원과정이 필요하다. 또한 최근에 많은 연구가 진행되고 있는 귀금속 담지 촉매는 기존 촉매의 단점을 극복하고 활성이 높은 장점이 있다. 이에 본 연구에서 제시한 페로브스카이트 촉매는 상용 촉매, 귀금속 담지촉매 시스템과의 비교를 위하여 제작된 촉매를 사용한 반응시스템과 기존 상용촉매를 사용한 반응시스템을 비교하여 개발 촉매의 성능 수준을 검토하였다. 이러한 결과 페로브스카이트 구조 촉매는 상용촉매의 공정상의 단점과 귀금속 담지촉매의 가격적인 측면에서의 단점을 동시에 극복한 촉매로서 성능 및 메탄화반응 억제 측면에서 우수성을 보유하고 있다는 것을 증명하였다. 이러한 페로브스카이트 구조 촉매의 반응특성을 규명하기 위해 문헌조사해본 결과 기존 수성가스전환반응에서 쓰이는 촉매들의 반응매카니즘은 대표적으로 formate와 redox 반응 두가지가 있었다. 페로스브스카이트 구조 촉매는 그 구조와 귀금속 함량, 활성 등 성능측면에서 귀금속 촉매와 상당히 유사한 측면이 있기 때문에 귀금속 담지 촉매의 반응속도식을 기본으로 하여 실험결과와 일치시켜 페로브스카이트구조 촉매에 맞는 반응속도식을 제시하고 이를 통한 반응파라미터 값을 도출하였다.
석탄가스화복합발전(IGCC: Integrated Gasification Combined Cycle)의 고온 고압 합성가스로부터 $CO_2$를 저비용으로 포집하기 위한 연소전 포집 기술 중 유동층 촉진수성가스전환(SEWGS) 공정이 제안되어 연구개발 중에 있다. 연소전 $CO_2$ 포집을 위한 SEWGS 공정은 동일한 2탑 순환 유동층 반응기에서 고온 고압의 합성가스($H_2$, CO)를 유동층 WGS 촉매를 사용하여 CO를 $CO_2$로 전환하는 동시에 전환반응으로 생성된 $CO_2$를 흡수제를 이용하여 포집하는 기술이다. 본 연구는 $CO_2$ 회수와 WGS 반응이 동시에 이루어지는 공정에 적용 가능한 건식 재생 흡수제 및 유동층 WGS 촉매 개발을 목표로 $CO_2$ 흡수제(P Series) 및 WGS 촉매(PC Series) 조성을 제안하고 분무건조기를 이용하여 6~8kg/batch로 성형 제조하였다. 제조된 $CO_2$ 흡수제 및 촉매의 특성 평가 결과 내마모도(Attrition resistance)를 포함한 물리적 특성이 유동층 공정의 요구조건을 만족하는 결과를 얻을 수 있었다. 또한, 모사 석탄 합성가스를 이용하여 20bar, $200^{\circ}C$ 흡수/$400^{\circ}C$ 재생 조건에서 열중량 분석기(TGA) 및 가압 유동층(Fluidized-bed) 반응기를 통한 흡수제의 $CO_2$ 흡수능 평가를 수행하였다. 그 결과 내마모도(AI) 3% 이하로 기계적 강도가 우수하며, $CO_2$ 흡수능 17.6 wt%(TGA) 및 11wt%(가압 유동층)를 나타냈다. 유동층 WGS 특성 평가 결과 내마모도가 7~35%로 우수하였고, CO 전환율은 $200^{\circ}C$에서 80% 이상으로, 유동층 SEWGS 공정에 적용 가능한 특성을 확인하였다.
Kim, Jeong-Nam;You, Jong-Kyun;Choi, Soo-Hyun;Baek, Il-Hyun
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.1
/
pp.21-27
/
2016
Global warming due to greenhouse gas emissions is considered as a major problem worldwide, and many countries are making great efforts to reduce carbon dioxide emissions. Many technologies in post-combustion, pre-combustion and oxy-fuel combustion $CO_2$ capture have been developed. Among them, a hybrid pre-combustion $CO_2$ capture system of a water gas shift (WGS) reactor and a membrane gas separation unit was investigated. The 2 stage WGS reactor integrated high temperature shift (HTS) with a low temperature shift (LTS) was used to obtain a higher CO conversion rate. A Pd/Cu dense metal membrane was used to separate $H_2$ from $CO_2$ selectively. The performance of the hybrid system in terms of CO conversion and $H_2$ separation was evaluated using a 65% CO, 30 % $H_2$ and 5% $CO_2$ gas mixture for applications to pre-combustion $CO_2$ capture. The experiments were carried out over the range of WGS temperatures ($200-400^{\circ}C$), WGS pressures (0-20bar), Steam/Carbon (S/C) ratios (2.5-5) in a feed gas flow rate of 1 L/min. A very high CO conversion rate of 99.5% was achieved with the HTS-LTS 2 stage water gas shift reactor, and 83% $CO_2$ was concentrated in the retentate using the Pd/Cu membrane.
Palladium membranes, which are permselective to hydrogen separation, were used for the hydrogen purification and in membrane reactors for improving conversions by shifting the reaction equilibrium. Palladium/ceramic composite membranes were prepared by electroless plating technique and then etched in titanium chloride ($TiCl_4$) as a post treatment to enhance the membrane's durability. These membranes were used for membrane reactors in water gas shift (WGS) reaction. CO conversions for the membrane reactor were obtained according to experimental parameters and compared to the traditional reactor without a palladium/ceramic membrane. As a result, CO conversion using palladium membrane reactor at an appropriate condition was over 20~25% greater than that without the membrane reactor. The stability in the long-term test of up to 120 h for WGS reaction with the membrane reactor was good without the degredation of CO conversion.
합성천연가스(SNG: Synthetic Natural Gas)를 얻기 위해, 석탄 가스화로부터 얻은 합성가스는 일반적으로 수소와 일산화탄소의 비가 3.0($H_2$/CO)이 되도록 수성가스전환(WGS)반응을 거친 후 메탄화반응기로 유입되며, 가능하면 낮은 온도에서 메탄 전환율이 높은 메탄화 반응의 특성상 강한 발열반응이 수반되므로 이를 낮추는 것이 중요하다. 또한, 최종생성물내의 메탄 농도를 높이기 위해 WGS 이후 탈황과 동시에 이산화탄소를 제거하기 위한 공정이 요구된다. 본 연구에서는 정제된 합성가스의 WGS와 이산화탄소 제거가 생략된 공정을 개발하기 위해, 상업용 촉매에 대하여 수소의 농도가 낮은 합성가스를 이용하여 스팀과 이산화탄소에 대한 메탄화반응 특성을 평가하였다. 또한, 이산화탄소의 존재여부에 따라 스팀으로 메탄화반응과 WGS가 동시에 일어날 수 있는 최적의 운전조건을 얻고자 하였다.
A membrane reactor concept, which combines the typical characteristics of chemical reaction with separation process, has been analyzed and simulated in this study. The advantages of the use of a membrane reactor include chemical equilibrium shift towards higher reactant conversion and purer product than the traditional reactors. A membrane reactor model which incorporates a catalytic reaction zone and a separation membrane is proposed. The water-gas shift reaction to produce hydrogen was chosen as a model reaction to be investigated. The membrane reactor is divided into smaller parts by number of n and each part (named cell), which contains both reaction and product separation function is modeled. One of the membrane outlet streams is connected to the next cell, which is repeated up to the last cell. The simulation results can be used for various purposes including decision of optimum operating condition and membrane reactor design.
폐기물 등을 열분해 가스화한 합성가스로부터 효과적으로 고순도의 수소를 회수하기 위하여 WGS(수성가스전환반응) 및 $CO_2$ 회수 PSA 공정을 적용하였다. 벤치스케일 열교환형 WGS반응기를 개발하여 기존 단열방식에 비하여 단순화한 반응시스템을 구축하였으며 출구 CO농도 4%대를 달성하였다. 또한 3베드로 구성된 벤치스케일의 $CO_2$ PSA운전을 수행한 결과, 2.5barg 흡착 및 진공재생단계를 적용하여 회수되는 $CO_2$의 농도가 95%이상, 회수율 80%이상을 기록하는 효율적인 $CO_2$ 회수공정을 개발하였다. 한편, 흡탈착 모사프로그램인 ADSIM을 통해서도 실험과 비교적 일치한 결과를 얻을 수 있었는데 향후 스케일업 설계자료 확보시 유용할 것으로 판단되었다.
Seo Yutaek;Seo Dong Joo;Jeong Jin Hyeok;Yoon Wang Lai
한국신재생에너지학회:학술대회논문집
/
2005.06a
/
pp.231-234
/
2005
수소 기반의 에너지 사회는 중소규모 분산 발전과 연료 전지 자동차에서 시작될 거라는 예측이 지배적이다. 가정용 고분자 연료전지 시스템은 상업화에 가장 가까운 소규모 분산 발전 시스템중의 하나이며, 에너지기술연구위원에서는 가정용 고분자 연료전지에 수소를 공급하기 위한 천연가스 수증기 개질시스템의 개발을 진행해 왔다. 효율 향상과 제작의 용이성, 그리고 소형화에 초점을 맞추어 개발된 prototype-I은 $2.0Nm^3/hr$의 순수 수소 생산 용량을 가지고 있으며, 수증기 개질기와 수성가스 전이 반응기 수중기 생성 장치, 그리고 반응열 공급에 필요한 버너 등을 이중 동심원관에 통합한 형태이다. 수중기 개질과 수성가스 전이 반응을 거쳐 나오는 개질 가스의 조성은 $72.3\%\;H_2,\;4.8\%\;CH_4,\;0.7\%\;CO,\;22.2\%\;CO_2$이며, 이때 S/C 비율은 2.5였다. 고분자 연료 전지 공급 시 요구되는 CO 농도가 10ppm 이하이기 때문에, 본 시스템에는 선택적 산화 반응기를 2단으로 설치하여 CO. 농도를 10ppm 이하로 낮추어주었다. 전체 시스템의 열효율은 LHV 기준으로 $68\%$. Prototype-I의 운전을 통해 설계 개선안을 도출하였으며, 이를 적용해 제작한 prototype-II가 시험 운전 중이다,. 통합된 개질 시스템에서는 각 단위 반응기사이의 열교환을 최적화하여 단위 반응들이 적정 온도 범위에서 일어나도록 유도하는 것이 중요하다. Prototype-II는 수증기 개질 반응기와 WGS 반응기, 수증기 생성 장치 사이의 열교환율을 향상시켜 농도를 $2.5\%$로 감소시키면서 CO의 농도는 $1\%$이하로 유지하였다. 이 결과를 바탕으로 얻어진 메탄 전환율은 $87\%$이고, 열효율은 LHV 기준으로 $75\%$이다. 아울러 개선점을 적용한 선택적 산화 반응기를 제작하였다. 개질 가스와 산소의 혼합을 유도하고, 반응기 온도의 제어를 통해 선택적 산화 반응의 속도와 선택성을 향상시키고자 한다. 시스템의 운전을 통해 메탄 전환율과 열효율의 개선을 진행할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.