• Title/Summary/Keyword: 수분값

Search Result 1,822, Processing Time 0.028 seconds

Indices for Quality Evaluation by Physicochemical and Chemoenzymatic Method in Red seabream, Pagrus major (물리 및 효소화학적 방법에 의한 참돔, Pagrus major의 품질판정 지표 설정)

  • 심길보;배진한;정호진;여해경;김태진;조영제
    • Journal of Aquaculture
    • /
    • v.17 no.3
    • /
    • pp.228-232
    • /
    • 2004
  • This study evaluates red seabream quality using physicochemical and chemoenzymatic indices. Breaking strength was correlated with moisture content and lipid content of red seabram by a precedent experiment. Moisture content (X$_1$), lipid content (X$_2$) and breaking strength (Y) were optimized with multiple regression as, Y= -2.53539+0.05544X$_1$-0.00161X$_2$. To test the equation, red seabream (n=13) were randomly purchased and measured moisture content, lipid content and breaking strength. The calculated breaking strength using the equation was similar to breaking strength measured using Rheo meter. Adenylate energy charge (AEC), a general biochemical index of stress, values of all sample were higher than 0.8 expect two fish. Fish's condition was a good. The equation developed in this study predicts breaking strength with moisture and lipid content measured. Moreover the equation may be used in grading cultured red seabream with calculated breaking strength. Grade according to breaking strength, when it came to over 1.4 kg, was measured as high grade; when it came to below 1.2 kg, was measured as low grade. Grade according to AEC, when it came to over 0.8, was measured as high grade.

Demand Analysis of the Home Ubiquitous Network Services Using Conjoint Method (컨조인트 분석방법을 이용한 홈 유비퀴터스 네트워크 서비스의 수요 분석)

  • 이종수;안지운;이정동;신혜영
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2003.11a
    • /
    • pp.101-114
    • /
    • 2003
  • 홈 유비퀴터스 네트워크란 PC, 휴대 전화, 디지털TV, 냉장고, 에어컨, 개인 휴대 정보 단말기(PDA), 게임기 등 가정 내의 정보기기들 사이에 통합된 네트워크를 형성해 데이터를 공유할 수 있는 환경을 구성한 것이다. 홈 네트워크 서비스를 가능케 한 요인은 기술적 측면에서 가전기기의 디지털화 및 초고속망의 보급, 수요측면에서 가전기기를 통한 다양한 서비스를 이용하고자 하는 소비자의 요구, 공급측면으로 포화된 정보통신기기 시장에서 새로운 수요창출이 필요한 환경 등으로 요약될 수 있다. 이와 같이 현재 정보통신산업은 지금까지 구축된 정보통신 인프라를 바탕으로 새롭게 등장한 홈 네트워크 서비스 분야에 주목하고 있다. 홈 네트워크는 정보통신기술을 가전기기에 융합시킴으로써 새로운 서비스를 창출한다는 점에서 정보통신산업은 물론, 기존의 백색가전 산업까지 포괄하여 관련 산업의 전후방 효과가 매우 크다. 본 연구에서는 홈 네트워크 서비스에 관련한 핵심 속성을 분석하고, 핵심 속성에 대한 소비자의 선호를 분석하는 실증연구를 수행하였다. 현재 홈 네트워크 시장이 본격적으로 형성되지 않아 현시선호(revealed preference) 자료의 구득이 불가능하므로, 소비자에게 향후 제공될 수 있는 서비스 특성을 지닌 가상적인 제품 조합을 제시하고, 이에 대해 소비자가 실제 시장에서와 같은 구매행위를 가정하도록 한 후, 각 제품 조합에 대한 선호 순위를 매기게 함으로써 소비자의 진술선호(stated preference)를 측정하는 컨조인트(conjoint) 방법론을 사용하였다. 이러한 분석을 통해서 홈 네트워크 서비스의 각 속성에 대한 소비자의 선호구조를 파악하고 지불의 사액(Willingness To Pay, WTP)을 분석하도록 한다. 본 연구의 결과를 이용하여 향후 전개될 홈 네트워크 서비스 및 관련시장의 발전 방향을 전망해 보고 이에 따른 기업이나 정부차원의 대응전략을 파악하고자 한다.육구에서는 큰 변화를 나타내고 있지 않았다(p<0.05). 운동과 비운동시킨 참돔의 지질 함량의 변화는 운동시킨 참돔은 운동으로 인한 에너지 소비로 인하여 함량이 유의적으로 감소했으며(r=-0.35), 비운동사육구에서는 절식으로 인하여 지질함량이 감소하였다(r=-0.38). 파괴강도와 가장 밀접한 영향을 가지는 콜라겐은 운동과 비운동 모두 사육기간동안 큰 변화는 보이지 않았다. 초기의 파괴강도값은 1.45±0.02kg(운동사육구), 1.36±0.18kg(비운동사육구)이였으며 사육기간동안 운동사육구는 파괴강도값이 증가한 반면, 비운동수조에서는 참돔의 파괴강도는 사육기간동안 큰 유의차가 없었다. 각 성분간의 상관도를 살펴보면, 수분함량과 파괴강도는 상관성을 가졌으며, 지질함량과 파괴강도도 같은 경향은 나타내었다. 운동기간동안의 파괴강도와 콜라겐 사이에는 상관성의 거의 없었다. 이는 운동기간에 따른 파괴강도의 증가가 콜라겐의 함량의 증가보다는 지질함량의 감소와 수분함량의 증가와 같은 성분과의 상관성이 크다고 판단된다. 다음으로는, 운동횟수에 의한 영향으로써 운동시간을 1일 6시간으로 설정하여, 운동횟수를 결정하기 위하여 오전, 오후에 각 3시간씩 운동시키는 방법과 오전부터 6시간동안 운동시키는 두 방법을 이용하여 품질을 비교하였다. 각 조건에 따라 운동시킨 참돔의 수분함량을 나타낸 것으로, 2회(오전 3시간, 오후 3시간)에 나누어서 운동시키기 위한 육의 수분함량은 73.37±2.02%를 나타냈으며, 1회(6시간 운동)운동시키기 위한 육은 71.74±1.66%을 나타내었다. 각각의 운동조건에서 양식된 참돔은 사육초기에는 큰 변화가 없었으나, 사육 5일 이후에는 수분함량이 증가하여 15일에는 76.40±0.14, 75.62±0.98%의 수분함량을 2회와 1회 운동시킨 참돔의 육에서 각각 나타났다. 운동횟수에 따른 지질함량은 2회 운동시킨 참돔은 5.83±2.08, 1회 운동시킨 참돔은 6.72

  • PDF

Culture Maturity of Lentinula edodes on Sawdust-Based Substrate in Relation to Fruiting Potential (표고 톱밥배지의 성숙도와 자실체형성 포텐셜)

  • Ohga, Shoji;Min, Du-Sik;Koo, Chang-Duck;Choi, Tae-Ho;Leonowicz, A.;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • Culture maturity assessment can be used to control fruiting body flush timing. Culture maturity of sawdust-based substrate was evaluated by using oak mushroom, (Lentinula edodes (Berk.) Pegler). The influence of substrate water potential (${\psi}$) on the growth and fruiting of three genotypes of L. edodes was also investigated. Glucosamine content revealed a peak at the fruiting body senescent stage. Glucosamine increased steadily to the sporophore senescent stage, and sharply declined at crop treatment. Lipid phosphate and ergosterol contents peaked at pinning and button break stages, respectively. Therefore lipid phosphate and ergosterol contents would be considered as the convenient measurement for judging culture maturity and fruiting potentials. The substrate pH values before inoculation and on the fruiting stage were varied from 6.3 to 4.0. This pH changes were detected as changes in color from bluish purple to yellow by direct bromphenol blue(BPB) spraying, and shown a good correlation with fruit body yield of the 1 st flush. Concerning water potential of the cultures, a slight reduction of water potential, -0.5MPa, stimulated mycelial and colony growths on liquid, agar and sawdust-based substrates. The water potential of well-colonized matured substrate was -0.7MPa and -4.0MPa, before and after the fruiting, respectively. Excellent water providing capacity (higher ${\psi}$) is expected to well-matured cultures with a high density of mycelial colonization. Also, the substrate water potential significantly affected by the interaction between genotypes and spawn run time.

  • PDF

Mass transfer Characteristic during Osmotic Dehydration of Ginger and Its Effect on Quality (생강 삼투압 건조 시 물질이동 특성과 품질에 미치는 효과)

  • Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.372-376
    • /
    • 1998
  • Internal mass transfer during osmotic dehydration of gingers in sugar solution was examined as a function of concentration, temperature and immersion time of those solutions using moisture loss, sugar gain, molality and rate parameter. Influence of osmotic dehydration on browning reaction and texture properties of air dried rehydrated was also evaluated. Increasing the concentration and temperature of sugar solutions increased moisture loss, sugar gain, molality and rate parameter. Water loss and sugar gain were rapid in the first 3 min and then changed gentle slope. Moisture loss during osmotic dehydration using a sugar solution $(60\;Brix,\;80^{\circ}C)$ with 18 min immersion time was 40.05 g moisture/100 g wet ginger which was 52% reduction of initial moisture content in ginger (83.02%, wet basis). The changes of rate parameter were more affected by temperature than by concentration of sugar solution. Minimum browning degree (O.D.=0.027) was carried out by osmotic dehydration in sugar solution $(40\;or\;50\;Brix,\;80^{\circ}C)$ with 15 min immersion time compared to control (O.D.=0.132). Influence of osmotic dehydration on puncture forces of 3 min rehydrated ginger in boiling water were $22{\sim}34%$ of reduction, while blanching treatment had not affected compared to those of control.

  • PDF

Quality Characteristics of Instant Nuroong-gi Prepared Using a Microwave (Microwave를 이용한 즉석 누룽지의 품질특성)

  • Lee, Hyun-Seok;Kwon, Ki-Hyun;Kim, Jong-Hoon;Cha, Hwan-Soo
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.669-674
    • /
    • 2009
  • We prepared puffed instant Nuroong-gi samples using a microwave and investigated the physicochemical characteristics of the products. The quality of Nuroong-gi prepared using a microwave was compared with that of noodles prepared in a steam cooker and pressure cooker in terms of moisture content, color, water binding capacity ratio, viscosity, sedimented volume of insoluble solids, turbidity, and sensory evaluation. The moisture content of Nuroong-gi prepared in a microwave was similar to that of steam cooker and pressure cooker samples. The color (lightness) of steam cooker-prepared noodles was greater than that of noodles cooked using other modes. The water binding capacity ratio fell with increasing microwave cooking time. The viscosity of noodles prepared using a microwave was higher than that of pressure cooker samples and lower than that of steam cooker noodles. The sedimented volume of insoluble solids and turbidity increased with a rise in cooking temperature. Nuroong-gi prepared in a microwave scored higher in sensory evaluation tests than did steam cooker or pressure cooker samples. These results indicate that Nuroong-gi preparation using a microwave is very efficient.

Monitoring of Crop Water Stress with Temperature Conditions Using MTCI and CCI (가뭄과 폭염 조건에서 MTCI와 CCI를 이용한 수분 스트레스 평가)

  • Kyeong-Min Kim;Hyun-Dong Moon;Euni Jo;Bo-Kyeong Kim;Subin Choi;Yuhyeon Lee;Yuna Lee;Hoejeong Jeong;Jae-Hyun Ryu;Hoyong Ahn;Seongtae Lee;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1225-1234
    • /
    • 2023
  • The intensity of crop water stress caused by moisture deficit is affected by growth and heat conditions. For more accurate detection of crop water stress state using remote sensing techniques, it is necessary to select vegetation indices sensitive to crop response and to understand their changes considering not only soil moisture deficit but also heat conditions. In this study, we measured the MERIS terrestrial chlorophyll index (MTCI) and chlorophyll/carotenoid index (CCI) under drought and heat wave conditions. The MTCI, sensitive to chlorophyll concentration, sensitively decreased on non-irrigation conditions and the degree was larger with heat waves. On the other hand, the CCI, correlated with photosynthesis efficiency, showed less sensitivity to water deficit but had decreased significantly with heat waves. After re-irrigation, the MTCI was increased than before damage and CCI became more sensitive to heat stress. These results are expected to contribute to evaluating the intensity of crop water stress through remote sensing techniques.

Growth Performances and Physiological Responses of Quercus spp. and Fraxinus rhynchophylla Subjected to Different Soil Moisture Regimes and Nutrition Levels (수분(水分) 및 양료(養料) 처리(處理)에 따른 참나무류와 물푸레나무의 생장 및 생리 반응)

  • Kwon, Ki Won;Lee, Jeoung Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.164-174
    • /
    • 1994
  • Temporal changes in growth performances, chlorophyll contents, and tissue water relations for determining their physiological responses of five economic tree species subjected to chronic water and nutrition stresses were investigated with containerized seedlings grown in different soil moisture regimes and nutrition levels. Seedlings of Quercus acutissima, Q. variabilis, Q. mongolica, Q. serrata, and Fraxinus rhynchophylla were propagated in plastic pots(I.D. $16cm{\times}Depth$ 16cm) for the experiments. The seedlings were subjected to two soil moisture regimes of dry and wet soils and two nutrition levels of fertilization with N+P+K and no fertilization through the growing season from May to September in a green house. For the purpose of analyzing their responses to the environmental stresses, seedling heights and root collar diameters, chlorophyll contents, and P-V curve parameters of the seedlings were measured in May, July, and September. The environmental stresses coming from moisture and nutrient deficits affected the growth performances of seedlings variously among species and among different growing periods, as well as between height and basal diameter growth of seedlings. The growth performances of Q. acutissima were influenced sensitively on the stresses, but those of Q. mongolica less influenced in comparison with other species. Chlorophyll contents were generally higher in Quercus spp. than F. rhynchophylla through the growing season. The chlorophyll contents changed by species and by treatment through the season within ranges of 0.14~1.96 mg/g dry wt. of chlorophyll a and within 0.16~1.79mg/g dry wt. of chlorophyll b, respectively. But the contents seemed to be decreased gradually through the chronic environmental stresses and leaf senescence. The osmotic potential at full turgor(${\Psi}{{\pi}o}$) and turgor loss point(${\Psi}{\pi}p$) had temporarily declined up to 3 to 5bars from -7.0~-12.4bars in May to -10.2~-17.5bars in September and up to 5 to 6bars from -7.6~-14.2bars in May to -12.9~-20.4bars in September, respectively, with some exceptions. The values of ${\Psi}{\pi}p$ were generally high in F. rhynchophylla in May and July, but high in Q. serrata in September. Relative water contents at turgor loss point(RWCp) were generally high in F. rhynchophylla, but the temporal changes of RWCp were quite and frequently different among species and among treatment.

  • PDF

Standardization of Hydration in the Stratum Corneum Using by Polyols (폴리올을 이용한 각질층 수분량 측정의 표준화 연구)

  • Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.113-119
    • /
    • 2015
  • The measurement of hydration level in the surface layer of the skin, stratum corneum (SC), gives important information on the biophysical properties and function of the skin barrier such as softness, flexibility, and healthiness of the skin. But it is difficult to measure a consistent hydration level from a sample to another sample due to individual variations and environmental changes. The aim of this study was to evaluate objective hydration after using various products in the SC. The SC Hydration was measured by capacitance (Corneometer$^{(R)}$, C+K, Germany) on the ventral site of forearm from 40 healthy volunteers. The skin surface was chronologically measured immediately after application of the test products and 3 and 6 hours later. We analyzed the averages of five measurements of each site and used the hydration increase rate for correction on untreated site variation. We found that most polyols including glycerol and butylenes glycol influenced directly the hydration increase rate in the SC previously. In this study, glycerol was used to prepare the standard products from 0 to 20 percents and applied to the same volunteers. The individual standard curve showed linear relation to glycerol concentrations. Based on the the standard curve, hydration of SC was converted into hydration increase rate to glycerol concentrations. The converted glycerol concentrations of products were repetitive and reproducible. In addition, the individual standard curve was used to relate the skin type of each individual. These results suggest that the hydration of the SC standardized regardless of external variation and individual skin condition can explain detailed skin state variation. Further studies will be conducted with other ingredients such as surfactants, lipids and aqueous materials, and with other methods for noninvasive measurement.

Prediction of Soil Moisture using Hydrometeorological Data in Selmacheon (수문기상자료를 이용한 설마천의 토양수분 예측)

  • Joo, Je Young;Choi, Minha;Jung, Sung Won;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.437-444
    • /
    • 2010
  • Soil moisture has been recognized as the essential parameter when understanding the complicated relationship between land surface and atmosphere in water and energy recycling system. It has been generally known that it is related with the temperature, wind, evaporation dependent on soil properties, transpiration due to vegetations and other constituents. There is, however, little research concerned about the relationship between soil moisture and these constitutes, thus it is needed to investigate it in detail. We estimated the soil moisture and then compared with field data using the hydrometerological data such as atmospheric temperature, specific humidity, and wind obtained from the Flux tower in Selmacheon, Korea. In the winter season, subterranean temperature showed highly positive correlation with soil moisture while it was negatively correlated from the spring to the fall. Estimation of seasonal soil moisture was compared with field measurements with the correlation of determination, R=0.82, 0.81, 0.82, and 0.96 for spring, summer, fall, and winter, respectively. Comprehensive relationship from this study can supply useful information about the downscaling of soil moisture with relatively large spatial resolutions, and will help to deepen the understanding of the water and energy recycling on the earth's surface.

Study of Heating Temperature and Quantification Conditions of Standard Water for Evaluating Hair Water Content (모발 수분 함량 평가를 위한 가열 온도와 기준 수분 정량 조건 연구)

  • Sang-Hun Song;Jangho Joo;Hyun Sub Park;Seong Kil Son;Nae-Gyu Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • Recently, there have been attempts to claim the hair moisturizing effect for a hair care product, however there has not yet been an official evaluation method because heating temperature for hair has not been established. This study was conducted to establish a quantitative evaluation for hair water content. In order to observe the behavior of water inside hair, heat was applied to hair with various temperatures using thermogravimetric dry residue. As the heating temperature increased, the amount of moisture released from the hair increased. As a result of evaluating hair using a differential scanning calorimeter (DSC), a unique phenomenon in which a rapid endothermic reaction occurs around 75 ℃ was observed. This phenomenon was also observed in different ethnic hair. In hair that damaged the hair cuticle barrier with oxidation and heat, this rapidly rising endothermic reaction temperature occurred at 77 ℃, which was slightly higher, and 73 ℃ was observed when this hair was applied with polar oil, conditioning polymer, or keratin protein. To determine how this reaction affects the hair surface, friction test was performed using an atomic force microscope. When heated above 75 ℃, cuticle friction increased, however when heated above 90 ℃, there was no change in hair cuticle friction. Finally, it was confirmed that around 75 ℃ is the critical temperature at which desorption of water bound to the hair occurs. It is suggested that a heating temperature of 75 ℃ is the optimal temperature for detecting and quantifying the moisture content of hair, and that approximately 10% detected at 75 ℃ can be a standard value for hair moisture content.