DOI QR코드

DOI QR Code

Standardization of Hydration in the Stratum Corneum Using by Polyols

폴리올을 이용한 각질층 수분량 측정의 표준화 연구

  • Nam, Gaewon (Department of Cosmetic Science & Technology, Seowon University)
  • 남개원 (서원대학교 화장품과학과)
  • Received : 2015.06.10
  • Accepted : 2015.06.29
  • Published : 2015.06.30

Abstract

The measurement of hydration level in the surface layer of the skin, stratum corneum (SC), gives important information on the biophysical properties and function of the skin barrier such as softness, flexibility, and healthiness of the skin. But it is difficult to measure a consistent hydration level from a sample to another sample due to individual variations and environmental changes. The aim of this study was to evaluate objective hydration after using various products in the SC. The SC Hydration was measured by capacitance (Corneometer$^{(R)}$, C+K, Germany) on the ventral site of forearm from 40 healthy volunteers. The skin surface was chronologically measured immediately after application of the test products and 3 and 6 hours later. We analyzed the averages of five measurements of each site and used the hydration increase rate for correction on untreated site variation. We found that most polyols including glycerol and butylenes glycol influenced directly the hydration increase rate in the SC previously. In this study, glycerol was used to prepare the standard products from 0 to 20 percents and applied to the same volunteers. The individual standard curve showed linear relation to glycerol concentrations. Based on the the standard curve, hydration of SC was converted into hydration increase rate to glycerol concentrations. The converted glycerol concentrations of products were repetitive and reproducible. In addition, the individual standard curve was used to relate the skin type of each individual. These results suggest that the hydration of the SC standardized regardless of external variation and individual skin condition can explain detailed skin state variation. Further studies will be conducted with other ingredients such as surfactants, lipids and aqueous materials, and with other methods for noninvasive measurement.

피부의 최외곽층인 각질층에 대한 수분량을 측정하는 것은 피부장벽기능과 생물리학적 특성에 대한 피부 건강함, 유연함, 부드러움 등의 중요한 정보를 제공한다. 그러나, 평가자와 피험자와의 개인적인 차이와 측정환경의 변화에 따라 재현성과 반복성에 있어서 각질층의 수분량을 측정하는 데에는 많은 어려움이 있다. 본 연구의 목적은 피부 각질층에 여러 종류의 제품을 사용 전후에 객관적으로 수분량을 측정하는 데에 있다. 40명의 건강한 자발적 피험자의 하박 내측을 피부의 전기용량 특성을 이용하여 수화정도를 측정하였다. 피부 수분량은 시험제품 도포 후, 3 h, 6 h 뒤에 측정하였다. 무도포 부위의 편차를 보정하기 위해 수분증가율을 이용하였고, 5반복 측정을 통하여 분석하였다. 수분량 측정에 가장 효과를 보이는 대표적 폴리올 종류인 글리세롤과 부틸렌 글라이콜을 이용하여 연구를 수행하였다. 대부분의 폴리올 종류는 피부 수분량 변화에 영향을 미치기 때문에 연구에 참여한 피험자에게 0 ~ 20%의 글리세롤을 표준제품으로 사용하여 보정하였다. 피부 수분량은 낮은 농도의 글리세롤 범위에서 직선의 상관관계를 갖기 때문에, 글리세롤의 농도에 따라 피부 수분량에 대한 피험자 각각의 표준화된 곡선을 얻었다. 이렇게 얻어진 피부 수분량에 대응하는 글리세롤 농도 값은 통계학적으로 재현성과 반복성을 보였다. 게다가 이렇게 얻어진 표준화 곡선은 피험자 개인의 피부특성으로 활용할 수 있었다. 이러한 연구 결과는 화장품과 같은 피부외용제품에 대한 미세한 피부 상태의 변화와 외부환경 변화에도 불구하고, 같은 결과를 보였다. 향후 이러한 결과를 토대로, 계면활성제와 지질, 수용성 물질에 대한 제품 원료에 대한 피부 측정에 필요한 비침습적 방법과 병행해서 사용할 수 있을 것으로 사료된다.

Keywords

References

  1. G. Jemec and J. Serup, Epidermal hydration and skin mechanics. The relationship between electrical capacitance and the mechanical properties of human skin in vivo, Acta Derm. Venereol., 70, 245 (1990).
  2. F. Auriol, L. Vaillant, L. Machet, S. Diridollou, and G. Lorette, Effects of short-time hydration on skin extensibility, Acta Derm. Venereol., 73, 344 (1993).
  3. G. Jemec and H. Wulf, The plasticising effect of moisturisers on human skin in vivo: a measure of moisturizing potency?, Skin Res. Technol., 4, 88 (1998). https://doi.org/10.1111/j.1600-0846.1998.tb00092.x
  4. J. Bettinger, M. Gloor, A. Vollert, A. Kleesz, J. Fluhr, and W. Gehring, Comparison of different non-invasive test methods with respect to the effect of different moisturizers on skin, Skin Res. Technol., 5, 21 (1999). https://doi.org/10.1111/j.1600-0846.1999.tb00199.x
  5. G. Jemec and H. Wulf, Correlation between the greasiness and the plasticizing effect of moisturizers, Acta Derm. Venereol., 79, 115 (1999). https://doi.org/10.1080/000155599750011318
  6. M. Mateus, Bergamaschia, D. Orlando, and H. Santosb, A comparative analysis of the changes during evaporation of three different commercial emulsion of unknown composition, J. Dis. Sci. Technol., 31, 188 (2010). https://doi.org/10.1080/01932690903110343
  7. B. Murray and R. Wickett, Sensitivity of Cutometer data to stratum corneum hydration level. A preliminary study, Skin Res. Technol., 2, 167 (1996). https://doi.org/10.1111/j.1600-0846.1996.tb00145.x
  8. B. Murray and R. Wickett, Correlations between Dermal Torque Meter, Cutometer, and Dermal Phase Meter measurements of human skin, Skin Res. Technol., 3, 101 (1997). https://doi.org/10.1111/j.1600-0846.1997.tb00170.x
  9. H. Tagami and Y. Kanamaru, Water sorption-desorption test of the skin in vivo for functional assessment of the stratum corneum, J. Invest. Dermatol., 78, 425 (1982). https://doi.org/10.1111/1523-1747.ep12507756
  10. P. Clarys, A. Barel, and B. Gabard, Non-invasive electrical measurements for the evaluation of the hydration state of the skin: comparison between three conventional instruments - the corneometer, the skicon and the nova DPM. Skin Res. Technol., 5, 14 (1999). https://doi.org/10.1111/j.1600-0846.1999.tb00198.x
  11. E. Alanen, K. Nicklen, N. Lahtinen, and J. Monkkonen, Measurement of hydration in the stratum corneum with the Moisture Meter and comparison with the Corneometer. Skin Res. Technol., 10(1), 32 (2004). https://doi.org/10.1111/j.1600-0846.2004.00050.x
  12. G. Nam, S. Kim, E. Kim, J Kim, and B. Chae, How skincare ingredient concentrations can modulate the effect of polyols and oils on skin moisturization and skin surface roughness, IFSCC magazine, 9(1), 37 (2006).
  13. E. Kim, G. Nam, S. Kim, H. Lee, S. Moon, and I. Chang, Influence of polyol and oil concentration in cosmetic products on skin moisturization and skin surface roughness, Skin Res. Technol., 13(4), 417 (2007). https://doi.org/10.1111/j.1600-0846.2007.00246.x
  14. C. Blichmann and J. Serup, Assessment of skin moisture. Measurement of electrical conductance, capacitance and transepidermal water loss, Acta Derm. Venereol., 68, 284 (1988).
  15. A. Barel and P. Clarys, Measurement of epidermal capaciatance. In: Serup J, Jemec GBE; eds. Handbook of non-invasive methods and the skin, Boca Raton: CRC Press, 165 (1995).