• 제목/요약/키워드: 수리화학적 특성

검색결과 189건 처리시간 0.026초

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • 제18권2호
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

Quality Evaluation of the Home-made Soy-Sauce Jangachi, Korean Traditional Pickle, Prepared by the Head-Families of Andong, Korea (안동지역 종가에서 전통적으로 제조된 간장 장아찌의 품질 특성)

  • Kim, Deok-Jin;Kim, Mi-Sun;Lee, Ye-Seul;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • 제41권3호
    • /
    • pp.311-319
    • /
    • 2013
  • In an effort to characterize the physicochemical properties and microbial risks associated with the soy sauce jangachi (Korean traditional pickle), 15 different home-made products, which were prepared from medicinal plants and wild edible vegetables, from head-families of Andong, Kyungsangbuk-do Province in Korea, and 6 different commercial products sold at supermarket, were investigated. The average pH of the mature soaking solutions and plants soaked in the 21 jangachi were $3.99{\pm}0.38$ and $3.51{\pm}0.41$, and the average acidity of the mature soaking solutions and soaked plants were $1.59{\pm}0.54$ and $1.65{\pm}0.76$, respectively. The average brix of the mature soaking solutions and plants soaked were $27.67{\pm}8.38$ and $25.61{\pm}6.60$, respectively. In salinity, which is a major factor in jangachi industry production, the average salinity of the mature soaking solutions and soaked plants were $7.55{\pm}3.26$ and $5.75{\pm}2.23$, respectively. In particular, the hot-peppers, eusuri, du-rup, kaet-ip, kuji-ppong, myeng-i and sancho jangachi were amongst the home-made products, and the salinity was above 8.8%, which was 2 folds-higher than that of the commercial sterilized products, and 1/3-lower than commercial non-sterilized products. The color difference and turbidity of jangachi were dependent on the plant parts used. In microbial risk assessment, the microorganisms related with food-borne disease, such as Escherichia coli, Salmonella sp, and Shigella sp., were not detected. After some time, total cell count analysis revealed that the commercial products sold at supermarkets were more vulnerable than the home-made products.

Preliminary Result of Lineament Analysis for the Potential Site Selection of HLW Geological Disposal (HLW 지층처분 광역 후보부지 선정을 위한 선형구조 예비 분석 결과)

  • Ko, Kyoungtae;Kihm, You Hong;Lee, Hong-Jin
    • Economic and Environmental Geology
    • /
    • 제51권2호
    • /
    • pp.167-176
    • /
    • 2018
  • It is necessary to consider various geological parameters such as lithology, geological structure, earthquake, hydraulic geology, geochemistry, geological engineering, and geothermal in order to select potential sites for HLW(high-level radioactive waste) geological disposal. In particular, the geological lineament reflects the characteristics of various geological parameters and can be used as an important criterion for site selecting such as nuclear power plants and HLW repositories. In this paper, the Finnish lineament classification method for HLW disposal site selection through the lineament analysis was applied to the lineament data in the Korean peninsula. For this purpose, we used previous lineament data from the KIGAM(Korea Institute of Geoscience and Mineral Resources) and obtained new lineament data from the field geologists such as structural geologist, paleoseismologist, and geomorphologist. To ensure the reliability of the new lineament analysis data, we used high-resolution satellite images and hill-shade relief maps which were constructed by a digital elevation model. In the prevailing direction analysis from the acquired lineament data, the NNE-SSW direction was the most dominant, but the ENE-WSW and NNW-SSE directions also showed highly frequency depending on the experts. Applying the Finnish classification method, the geometrical development characteristics of the lineament corresponding to the Class 1 and 2 used for the wide-wide candidate site were compared. As a result of direction analysis for Class 1, the NNE-SSW direction was the most dominant and the WNW-ESE direction also showed a high frequency. In the case of Class 2, the NNE-SSW is the most prevalent and WNW-ESE or ENE-WSW direction also had highly frequency depending on the experts. Different lineament analysis results based on the same data are interpreted as a result of subjective experience and analytical criteria from the every experts. Therefore, it is necessary to establish integrated criteria and consider geophysical data for the publication of reliable nation-wide lineament map.

Environmental Geochemistry and Contamination Assessment of the Tohyun Mine Creek, Korea (토현광산 수계의 환경지구화학적 특성과 오염도 평가)

  • 이찬희;이현구;이종창;전서령
    • Economic and Environmental Geology
    • /
    • 제34권5호
    • /
    • pp.471-483
    • /
    • 2001
  • The pH values of the mine and surface water from the Tohyun mine creek were higher compared with those of groundwater, and 2nd round samples in same sites were even alkaline. The stream and mine waters belong to the characteristics of (Ca+Mg)-(SO$_4$) and (Ca+Mg)-(HCO$_3$) types, and groundwaters have to the (Ca+Mg+Na+K)-(HCO$_3$+SO$_4$) type. As the 2nd samples. concentrations of mostly anions are increasing compared with the forder samples. However, the mostly cation concentrations are decreasing. The hydrogeochemistry indicate that water quality is different chemical characteristics and evolution trends. The range of $\delta$D and $\delta$$^{18}$ valutes (relative to SMOW) in the waters are shown in -62.2 to -70.1$\textperthousand$, and -8.1 to -9.4$\textperthousand$. The values are plowed parallel to $\delta$D=8$\delta$$^{18}$ O+ (6$\pm$4). The d values of groundwater show 2.4, which is lower than the surface (5.2) and mine (7.6) waters. Strontium concentra titans range from 0.025 to 11.844 mg/$\ell$ in all kinds of water samples, but the groundwater has the highest contents The $^{87}$ Sr/$^{86}$ Sr ratios (0.7115 to 0.7129) show more lightened to the groundwater. The $\delta$$^{18}$ O value, Ca and Sr contents are decreased with $^{87}$ Sr/$^{86}$ Sr increasing, because it is support to the altitude effects of the sampling sites rather than a water-rock interaction of environmental isotope. Using computer code of WATEQ4F, saturation indices of albite, Quartz, gibssite and gypsum are calculated to be soluble. The calcite and dolomite show super saturation state, however, clay mineral species are plotted boundary between undersaturation and supersaturation. In the Tohyun mine creek, reaction materials with ore wastes arid precipitation have influence upon increasing EC and TDS of the waters independent of pH. The SO$_4$ concentrations in the mine water is 181.845 mg/$\ell$. This is abruptly increase in surface water and then detected 249.727 mg/$\ell$ in the groundwater. As a results of the calculated sulfate mineral solubilities, the sulfate ions became saturation states an above 150 mg/$\ell$ concentrations.

  • PDF

Chemical Characteristics of Shallow Groundwater in an Agricultural District of Hyogyo-ri Area, Chungnam Province (충남 효교리 농업지역 천부지하수의 화학적 특성)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Choi, Eun-Gyeong;Kim, HyunKoo;Kim, MoonSu;Park, Ki-Hoon;Lim, Woo-Ri
    • Journal of the Korean earth science society
    • /
    • 제41권6호
    • /
    • pp.630-646
    • /
    • 2020
  • In rural areas, nitrate-nitrogen (NO3-N) pollution caused by agricultural activities is a major obstacle to the use of shallow groundwater as domestic water or drinking water. In this study, the water quality characteristics of shallow groundwater in Hyogyo-ri agricultural area of Yesan-gun, Chungcheongnam-do province was studied in connection with land use and chemical composition of soil layer. The average NO3-N concentration in groundwater exceeds the domestic and agricultural standard water qualities of Korea and is caused by anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. The groundwater type mainly belongs to Ca(Na)-Cl type, unlike Ca-HCO3 type, a general type of shallow groundwater. The average NO3-N concentration (7.7 mg L-1) in groundwater in rice paddy/other (upstream, ranch, and residential) area is lower than the average concentration (22.8 mg L-1) in farm field area, due to a lower permeability in paddy area than that in farm field area. According to the trend analysis by the Mann-Kendall and Sen tests, the NO3-N concentration in the shallow groundwater shows a very weak decreasing trend with ~0.011 mg L-1yr-1 with indicating almost equilibrium state. Meanwhile, SO42- and HCO3- concentrations display annual decreasing trend by 15.48 and 13.15%, respectively. At a zone of 0 to 5 m below the surface, the average hydraulic conductivity is 1.86×10-5 cm s-1, with a greater value (1.03×10-4cm s-1) in sand layer and a smaller value (2.50×10-8 cm s-1) in silt layer.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • 제17권3호
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • 제32권6호
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Relationship Between Standardized Precipitation Index and Groundwater Levels: A Proposal for Establishment of Drought Index Wells (표준강수지수와 지하수위의 상관성 평가 및 가뭄관측정 설치 방안 고찰)

  • Kim Gyoo-Bum;Yun Han-Heum;Kim Dae-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • 제11권3호
    • /
    • pp.31-42
    • /
    • 2006
  • Drought indices, such as PDSI (palmer Drought Severity Index), SWSI (Surface Water Supply Index) and SPI (Standardized Precipitation Index), have been developed to assess and forecast an intensity of drought. To find the applicability of groundwater level data to a drought assessment, a correlation analysis between SPI and groundwater levels was conducted for each time series at a drought season in 2001. The comparative results between SPI and groundwater levels of shallow wells of three national groundwater monitoring stations, Chungju Gageum, Yangpyung Gaegun, and Yeongju Munjeong, show that these two factors are highly correlated. In case of SPI with a duration of 1 month, cross-correlation coefficients between two factors are 0.843 at Chungju Gageum, 0.825 at Yangpyung Gaegun, and 0.737 at Yeongju Munjeong. The time lag between peak values of two factors is nearly zero in case of SPI with a duration of 1 month, which means that groundwater level fluctuation is similar to SPI values. Moreover, in case of SPI with a duration of 3 month, it is found that groundwater level can be a leading indicator to predict the SPI values I week later. Some of the national groundwater monitoring stations can be designated as DIW (Drought Index Well) based on the detailed survey of site characteristics and also new DIWs need to be drilled to assess and forecast the drought in this country.

Hydrogeochemical Characteristics and Contamination of Dissolved Major ions and Heavy Metals in Waters and Sediments from the Tancheon River (탄천의 하상퇴적물과 하천수내 주요 용존 이온과 중금속의 수리지구화학적 특성과 오염)

  • 이성은;김규한;이진수;전효택
    • Economic and Environmental Geology
    • /
    • 제35권1호
    • /
    • pp.25-41
    • /
    • 2002
  • In order to investigate the hydrogeochemical characteristics and contamination of dissolved major ions and heavy metals in the Tancheon River, river water and sediment samples were collected at 18 locations, along a distance of 69 km, between Yongin-si in Kyunggi-do and Samsung-dong in Seoul on October in 2000 and April in 2001. After appropriate sample preparation, waters were analyzed for the dissolved constituents and sediments. The pH values of river waters were in the range of 7.0 to 9.3 and could be plotted in the area of surface environment. The level of $Ca^{2+}$, , CI-, sol-, N0$_{3}$ and HC0$_{3}$ in the Tancheon River were higher than those in world average river water. Most of dissolved constituents in the river waters increased toward downstream from upstream. In particular, high concentrations of Zn2+, Na$_{+}$, CI$^{-}$, SO$_{4}^{2-}$ and N03- were found near densely residential areas and the Sungnam waste water treatment plant. The relative ion enrichment was caused by the inflow of local domestic and industrial sewages. Also, Ca2+ and HC03- concentrations were enriched in the middle of the Tancheon River due to the dissolution of cements. This indicates that the apartment complexes were built on a large scale in the upriver since these ten years and large amounts of construction materials such as cements were flowed into the Tancheon River. Concentrations of heavy metals (Mn, Cd, Cu, Pb, Zn) in sediments from the Tancheon River exceeded the lower limit of tolerence level in bottom sediment established by the Ontario Ministry of the Environment (OME) of Canada. In particular, these metals were highly elevated in sediment (TSM-12) collected from near the Sungnam waste water treatment plant. Heavy metals were higher enriched in sediments collected from dry period rather than wet period.