DOI QR코드

DOI QR Code

Preliminary Result of Lineament Analysis for the Potential Site Selection of HLW Geological Disposal

HLW 지층처분 광역 후보부지 선정을 위한 선형구조 예비 분석 결과

  • Ko, Kyoungtae (Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kihm, You Hong (Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hong-Jin (Geology Division, Korea Institute of Geoscience and Mineral Resources)
  • 고경태 (한국지질자원연구원 전략기술연구본부 방사성폐기물지층처분연구단) ;
  • 김유홍 (한국지질자원연구원 전략기술연구본부 방사성폐기물지층처분연구단) ;
  • 이홍진 (한국지질자원연구원 국토지질연구본부 지질연구센터)
  • Received : 2018.03.12
  • Accepted : 2018.04.06
  • Published : 2018.04.28

Abstract

It is necessary to consider various geological parameters such as lithology, geological structure, earthquake, hydraulic geology, geochemistry, geological engineering, and geothermal in order to select potential sites for HLW(high-level radioactive waste) geological disposal. In particular, the geological lineament reflects the characteristics of various geological parameters and can be used as an important criterion for site selecting such as nuclear power plants and HLW repositories. In this paper, the Finnish lineament classification method for HLW disposal site selection through the lineament analysis was applied to the lineament data in the Korean peninsula. For this purpose, we used previous lineament data from the KIGAM(Korea Institute of Geoscience and Mineral Resources) and obtained new lineament data from the field geologists such as structural geologist, paleoseismologist, and geomorphologist. To ensure the reliability of the new lineament analysis data, we used high-resolution satellite images and hill-shade relief maps which were constructed by a digital elevation model. In the prevailing direction analysis from the acquired lineament data, the NNE-SSW direction was the most dominant, but the ENE-WSW and NNW-SSE directions also showed highly frequency depending on the experts. Applying the Finnish classification method, the geometrical development characteristics of the lineament corresponding to the Class 1 and 2 used for the wide-wide candidate site were compared. As a result of direction analysis for Class 1, the NNE-SSW direction was the most dominant and the WNW-ESE direction also showed a high frequency. In the case of Class 2, the NNE-SSW is the most prevalent and WNW-ESE or ENE-WSW direction also had highly frequency depending on the experts. Different lineament analysis results based on the same data are interpreted as a result of subjective experience and analytical criteria from the every experts. Therefore, it is necessary to establish integrated criteria and consider geophysical data for the publication of reliable nation-wide lineament map.

고준위방사성폐기물 처분장 부지선정을 위해서는 암종, 지질구조, 지진, 수리지질, 지구화학, 지질공학 및 지열 등과 같은 다양한 지질학적 인자들에 대한 고려가 필요하며, 특히 선형구조는 다양한 지질인자의 특성을 반영하기 때문에 원자력 발전소, 고준위방사성폐기물 처분장 등과 같은 국가 중요시설물의 후보부지 선정에 있어 매우 중요한 기초자료로 활용될 수 있다. 본 논문에서는 선형구조분석을 통해 고준위방사성폐기물 광역 처분부지 선정을 실시한 핀란드의 선형구조 분류 방법을 국내 선형구조 자료에 적용하여 살펴보았다. 이를 위하여 기존에 한국지질자원연구원에서 보유한 선형구조도와 신규로 구조지질학, 고지진학, 지형학 전문가들로부터 획득한 새로운 선형구조 자료를 분석에 이용하였다. 새로운 선형구조 분석 자료의 신뢰성 확보를 위해 한반도 지역을 최근에 촬영한 위성영상과 국토지리정보원에서 제공하는 수치표고모델로 제작한 고해상도의 음영기복도를 이용하였다. 취득한 자료들의 전체적인 방향성 분석 결과에서는 북북동-남남서 방향이 가장 우세하게 관찰되었지만, 분석자들의 판독기준의 차이에 따라서 동북동-서남서 및 북북서-남남동 방향의 선형구조들도 높게 판독 되었다. 핀란드의 분류 방법을 적용하여, 광역후보부지 선정에 사용되는 등급 1과 등급 2에 해당되는 선형구조들의 기하학적인 발달특성을 상호 비교해 보았다. 그 결과에서는 전체적으로 등급 1의 경우에는 공통적으로 북북동-남남서 방향이 가장 우세하였으며, 서북서-동남동 방향의 선형구조도 빈도가 높게 나타났다. 등급 2의 경우에도 북북동-남남서 방향의 선형구조가 가장 우세하게 발달하고 있으며, 분석자에 따라 서북서-동남동 또는 동북동-서남서 방향의 선형구조도 빈도가 높게 나타났다. 같은 자료를 바탕으로 실시한 선형구조분석에서도 상이한 판독 결과를 보이는 것은 판독자의 주관적인 경험 및 기준이 작용하였기 때문으로 여겨진다. 따라서 신뢰도 높은 한반도 광역선형구조도를 발간하기 위해서는 상이한 자료들을 통합하는 과정에서 명확한 통합 기준의 설정이 필요하며, 지구물리탐사자료와 같은 추가적인 데이터를 통한 분석이 요구된다.

Keywords

References

  1. Arrowsmith, J.R. and Zielke, O. (2009) Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology, v.113, p.70-81. https://doi.org/10.1016/j.geomorph.2009.01.002
  2. Austin, J.R. and Blenkinsop, T.G. (2009) Local to regional scale structural controls on mineralisation and the importance of a major lineament in the eastern Mount Isa Inlier, Australia: Review and analysis with autocorrelation and weights of evidence. Ore Geology Reviews, v.35, p.298-316. https://doi.org/10.1016/j.oregeorev.2009.03.004
  3. Begg, J.G. and Mouslopoulou, V. (2010) Analysis of late Holocene faulting within an active rift using lidar, Taupo Rift, New Zealand. Journal of Volcanology and Geothermal Research, v.190, p.152-167. https://doi.org/10.1016/j.jvolgeores.2009.06.001
  4. Chae, B.G., Choi, J., Kihm, Y.H. and Park, S.-I. (2017) Geological structural parameters to be considered for siting of HLW repository: A review for case studies of foreign countries. Journal of the Geological Society of Korea. v.53, p.207-219 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.1.207
  5. IAEA (2011) Geological disposal facilities for radioactive waste, IAEA Specific Safety Guide No. SSG-14, 104p.
  6. KIGAM (2012) Development of quantitative assessment technology for long-term geological safety factors. GM704100-4.
  7. KIGAM (2017) Development of nationwide geoenvironmental maps for HLW geological disposal. GP2017-009.
  8. Kim, G.-B., Lee, J.-Y. and Lee, K.-K. (2004) Construction of lineament maps related to groundwater occurrence with ArcView and AvenueTM scripts. Computer & Geosciences, 30, p.1117-1126. https://doi.org/10.1016/j.cageo.2004.09.002
  9. Kim, G.-W. and Lim, M.-H. (2006) Orientations of Tectolineaments and Discontonuities for Different Rock Types in Andong Area, The Journal of Engineering Geology, v.16(1), p.23-30 (in Korean with English abstract).
  10. KORAD (2016) Spent unclear fuel story 70. Korea Radioactive Waste Agency, May 25th 2016. 135p.
  11. LBNL and SNL (2016) International Approaches for Deep Geological Disposal of Nuclear Waste : Geological Challenges in Radioactive Waste Isolation. Fifth Worldwide Review-2016. LBNL-1006984
  12. Lee, B.J., Chwae, U.C. and Kang, P.C. (1997) Lineaments in the southeastern part of the Korean Peninsula. Journal of the Geological Society of Korea, v.33, p.18-26 (in Korean with English abstract).
  13. Oh, H.-J., Kim, Y.-S., Choi, J.-K, Park E. and Lee, S. (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, v.399, p.158-172. https://doi.org/10.1016/j.jhydrol.2010.12.027
  14. O'leary, D.W., Friedman, J.D. and Pohn, H.A. (1976). Lineament, linear, lineation: some proposed new standards for old terms. Geological Society of America Bulletin, v.87(10), p.1463-1469. https://doi.org/10.1130/0016-7606(1976)87<1463:LLLSPN>2.0.CO;2
  15. Paananen, M. and Kuivamäki, A. (2007) Regional Lineament Analysis of the Southern Satakunta Area. POSIVA-WR-07-04, 33p.
  16. Perez-Lopez, R., Paredes, C. and Munoz-Martín, A. (2005) Relationship between the fractal dimension anisotropy of the spatial faults distribution and the paleostress fields on a Variscan granitic massif (Central Spain): the F-parameter. Journal of Structural Geology, v.27, p.663-667. https://doi.org/10.1016/j.jsg.2005.01.002
  17. Seppo, P. and Timo, R. (2017) Analyzing the data in the site selection process for the repository of spent nuclear fuel in Finland. KIGAM-GTK Workshop, February 8th 2017, Daejeon.
  18. TVO (1992) Final disposal of spent nuclear fuel in the Finnish bedrock - Preliminary site investigations, Helsinki. Nuclear Waste Commission of Finnish, Power Companies, Report YJT-92-32, 324p.