• Title/Summary/Keyword: 수리학적부하

Search Result 103, Processing Time 0.027 seconds

High-rate Anaerobic Treatment of Landfill Leachate (매립지 침출수 처리의 고율 혐기성 처리)

  • Lee, Chae-Young;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.136-146
    • /
    • 2007
  • Landfill leachate was successfully treated in upflow anaerobic sludge blanket (UASB) reactors regardless of the addition of granular sludge. Initial operating period was significantly reduced by the addition of granular sludge. At hydraulic retention time (HRT) of one day, chemical oxygen demand (COD) removal rates in Control and Granule reactor were maintained over 90%, respectively with organic loading rate (OLR) of $4-8kgCOD/m^3.d$. During the experiment, the inorganic precipitates were accumulated in and around the sludge, and in the wall of the reactors were formed in both reactors regardless of addition of granular sludge. Specific methanogenic activity (SMA) increased as adaptation of microorganism to the substrate and OLR were increased. The maximum SMA value of the sludge for Granule reactor was about $0.57gCOD/g{\cdot}VSS{\cdot}.d$. The SMA value was not decreased because of excessive inorganic accumulation, however, it was needed to have pre-treatment process of influent to remove the inorganic metals.

  • PDF

Nitrification Performance of a Moving Bed Bioreactor (MBBR) at Different Ammonia and Hydraulic Air-Loading Rates under Seawater Conditions (해수 조건에서 총암모니아성 질소 부하량과 수리학적 공기 부하량에 따른 유동상 여과조의 질산화 성능 평가)

  • Jaegeon Lee;Younghun Lee;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.870-877
    • /
    • 2023
  • The purpose of this study was to assess the efficiency of nitrification based on ammonia loading rates and hydraulic air-loading rates in a moving bed bioreactor (MBBR) under seawater conditions. The goal was to provide foundational data for the design of these bio reactors. At an ammonia loading rate of 0.2 g TAN·m-2 surface area·day-1, the influent TAN concentration was determined to be 1.76±0.33 mg·L-1, which is below the safe concentration for fish survival (2 mg·L-1). Considering operational aspects, the optimal ammonia-loading rate was derived. Subsequently, experimental results for nitrification efficiency at the optimal ammonia-loading rate revealed that the optimum hydraulic air-loading rate was 1.8 L·air·m-2 surface area·min-1. This condition resulted in the lowest concentrations of TAN and NO2-N in the influent water, thus establishing the optimal hydraulic air-loading rate. A regression equation was derived for the ammonia-removal rate (Y) based on the ammonia-loading rate (x) and expressed as a 0.5-order equation (Y=ax0.5+b). Specifically, for TAN concentrations of 0-6 mg·L-1, the regression equation Y=0.1683x0.5-0.13628, was established.

Night Soil Treatment by Anaerobic Sequencing Batch Reactor (혐기성 연속 회분식 반응조에 의한 분뇨처리)

  • 허준무;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • 운전 온도 $35^{\circ}C$, 평균 유기물부하 $3.1{\;}kgCOD/m^3/day$ 및 수리학적체류시간 10일에서 혐기성 연속회분식공정에 의한 분뇨처리를 수행하였다. 공정의 평가는 대조 소화조로 완전혼합형의 소화조와 병행하여 수행되었다. 본 실험에서 분뇨는 고농도의 암모니아성 질소와 침전성 고형물을 함유하고 있음에도 불구하고 희석 없이 소화가 가능하였다. 혐기성 연속회분식공정에서 고형물은 급속하게 증가하여 완전혼합형의 대조 소화조에 비하여 소화조내 고형물(biomass)의 농도가 2.4배로 증가하였고, 가스발생량에 있어서도 대조 소화조에 비해 현격한 증가를 보였으며 그 증가율은 205~220%에 달했다. 부가적인 침전 시설이 없이도 혐기성 연속회분식공정의 유출수질이 대조 소화조 보다 높게 나타났는데 상징액 기준으로 휘발성고형물 제거율은 혐기성 연속회분식공정이 대조 소화조 보다 12~14% 높았다. 한편, 혐기성 연속회분식공정의 운전인자로 반응/침강비(R/T ratio)를 조사한 결과 R/T비가 1인 경우가 3의 경우보다 가스발생량, 메탄함량 및 유기물 제거율이 약간 높았으나 큰 차이는 없었다. 위의 실험결과들로부터 혐기성 연속회분식공정은 고농도의 암모니아성 질소와 침전성 유기물을 함유하고 있는 분뇨의 처리에 효과적이고 안정적인 공정으로 판단된다.

  • PDF

The Numerical Analysis on Water Quality Variation by inflow of Rainfall Runoff at the Sea Shore (강우유출수의 유입에 의한 해안지역 수질변화에 관한 수치연구)

  • Choi, Gye-Woon;Byeon, Seong-Joon;Kim, Jung-Young;Cho, Sang-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1644-1648
    • /
    • 2008
  • 해안지역은 해수욕, 어패류의 수집 등의 각종 레크레이션에 있어 많은 사람들이 이용하는 공간이며, 해수는 해안지역에서 각종 활동 중 섭취할 가능성이 있으므로, 수질이 매우 중요하다고 할 수 있다. 이에 본 연구에서는 실제 해수욕장의 수치 모의(수리, 수문, 수질)를 통하여 우수 및 오수가 지표를 통해 해안으로 유입될 경우의 해안지역의 수질에의 영향에 관하여 연구하였다. 지표에서의 우수 유출 및 오수의 흐름을 수치해석은 MOUSE 모델을 사용하였으며 해안지역의 수치해석은 MIKE 3 모델을 사용하였다. 또한 수질 분석을 위하여 미생물의 증감에 영향을 주는 해당 지역의 기온, 수온, 일조량 등의 각종 인자를 구성하여 MIKE 3의 ECOLAB 모듈을 통하여 생물학적 분석을 수행하였다. 그 결과, 해수의 오염이 발생하면, 해수욕이 가능한 기간을 위주로 확인하였을 시, 미생물이 해수에 존재하는 시간은 연간 총 200시간 가량인 것으로 나타났으며, 강우시 해수의 오염이 발생할 시, 강우가 그친 뒤에도 미생물이 완전히 사멸할 때 까지 $4{\sim}6$시간의 정화기간이 필요한 것으로 나타났다. 그리고 첨두 오염 부하량은 비가 그친 직후에 나타나는 것으로 나타났으며 미생물의 해수 유입은 5mm 이상의 강우일 경우에 기준치 이상의 미생물이 발생하며, 해당 지역에 합류식 하수관거가 있을 시에 더욱 많이 발생하는 것으로 나타났다.

  • PDF

Hydraulic Shock Load Response of Activated Sludge Process (활성슬러지공정의 수리학적 충격부하 반응)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae;Cho, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF

Impacts of the Hydraulic Loading Rate and C/N Ratio on Nitrification in a Trickling Filter with Styrofoam Bead Media in Seawater (살수식 여과조의 질산화작용에 대한 수리학적 부하량과 C/N 비의 영향)

  • Choi, TaeGun;Kim, Pyong-kih;Park, JeongHwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.3
    • /
    • pp.256-267
    • /
    • 2019
  • Styrofoam beads, which are relatively inexpensive and can provide a large specific surface area, were tested as filter media. Styrofoam beads with a diameter of $3{\pm}0.5mm$ were used; the specific surface area of the beads was $1,034m^2{\cdot}m^{-3}$. Five independent recirculating culture systems were used in the experiment. Each system consisted of one culture tank and three trickling bio-filters. Using the systems, nitrification efficiency was evaluated with respect to hydraulic loading rate (HLR) and carbon/nitrogen (C/N) ratio. The lowest ammonia and nitrogen concentrations were $0.84mg{\cdot}L^{-1}$ and $1.30mg{\cdot}L^{-1}$, respectively, observed at an HLR of $50.9m^3{\cdot}m^{-2}{\cdot}h^{-1}$. Nitrification efficiency in the culture tank was highest at a C/N ratio of 0, with ammonia and nitrite nitrogen concentrations of $0.32mg{\cdot}L^{-1}$ and $0.90mg{\cdot}L^{-1}$, respectively. Ammonia and nitrite nitrogen concentrations in the culture tank abruptly changed at C/N ratios ${\geq}3$.

The evaluation of wetland sustainability for constructing a washland and Its hydrologic effect to Upo wetland (천변저류지 조성에 따른 습지지속가능성 평가 및 우포늪에 미치는 수문학적 영향 평가)

  • Kim, Jae-Chul;Kim, Jin-Kwan;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.137-148
    • /
    • 2008
  • There have been many cases of using wetlands as an alternative in controlling stormwater, treating mining leachate, and agricultural discharge, and so on, recently. The reality is, however, that the wetlands are not properly applicable because of the lack of enough longterm data for wetlands due to the difficulty of long-term monitoring. Therefore, this study tries to analyze the storage of Upo, Mokpo, Sajipo, and Jjokjibeul in Topyeong watershed using SWAT(Soil and Water Assessment Tool) model, one of the long-term runoff hydrologic model, for the purpose of generating the long-term data and analyzing the hydrologic behavior of wetlands based on the generated data. Also, the changes in runoff at the outlet are analyzed after applying the simulation of constructing washland in Topyeong watershed and the storage in Upo is analyzed. The result shows that the runoff at the outlet of the watershed is decreased in rainy season from July to August and increased in dry season from December to February. In addition, the analysis of Upo storage concludes that Upo can be influenced by the construction of the washland. The duration curve of washland is then analyzed in order to evaluate the wetland's sustainability in terms of washland and it appears that the runoff of washland is simulated to be less than that of the existing wetland. Moreover, runoffs of some washlands are simulated to be less even in wet season. These results lead to the fact that there should be further hydrologic management for constructed washland. Then, the changes in loads (TN and TP) because of constructing washland are analyzed. The result shows that the loads are reduced because of the construction. Also, the changes in loads due to the construction of buffer strips are analyzed to compare the load reductions caused by a washland. Finally, REMM model, a riparian management model, is applied to overcome the hydrologic ambiguousness of SWAT model, and then, the SWAT model results are compared to those of REMM.

Performance Evaluation of Vortex Screen for Treatment of Fine Particles in Storm Runoff (Vortex Screen장치를 이용한 강우유출수내 미세입자 처리특성 분석)

  • Lee, Jun-Ho;Jung, Yun-Hee;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.256-262
    • /
    • 2009
  • The use of hydrodynamic separator is becoming increasingly popular for suspended solids reduction in urban storm runoff. This study is a laboratory investigation of the use of Vortex Screen to reduce the solids concentration of synthesized storm runoff. The synthesized storm runoff was made with water and addition of particles; manhole sediment, road sediment, fly ash, and ployvinyl chloride powder. Vortex Screen was made of acryl resin with 250 mm of diameter and height of 700 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The samples were taken simultaneously at the influent storage tank and effluent tank, and measured SS and COD concentrations. The ranges of surface loading rate were 110 to 1,550 $m^3/m^2$/day, and influent SS concentrations were varied from 141 to 1,986 mg/L. This paper was intended to evaluate the effect of inlet baffle and the ratio of underflow to overflow ($Q_U/Q_O$) on particle separation efficiency for various particle size using Vortex Screen. It was found that when increase of $Q_U/Q_O$ from 10% to 20%, SS removal efficiency was increased about 6%. The range of SS and COD removal efficiencies of road sediment particle size 125<$d_p$<300 ${\mu}m$ were 68.0~81.0%, 53.1~71.9%, respectively. Results showed that SS removal efficiency with inlet baffle improved by about 10~20% compared without inlet baffle.

Ammonia removal rate on ammonia loading rates in seawater filtering system using rotating biological contactor (RBC) (회전원판을 이용한 해수 순환여과 시스템에서 암모니아 부하율에 따른 암모니아 제거율)

  • SON Maeng Hyun;JEON Im Gi;CHO Kee Chae;KIM Kang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.367-372
    • /
    • 2000
  • A series of experiment was conducted to investigate the relationship between ammoia removal rate and ammonia loading rates in seawater filtering system using rotating biological contactor (RBC). In this experiment, RBC system was consisted of rotating polyvinyl film disks, which provided $12 m^2$ of total effective surface area in $0.075 m^3$ of volume. $NH_4Cl$ was added by $10{\~}150 g$ as a ammonia nitrogen source to determine ammonia removal rate in RBC system. Relationship between time required for ammonia removal (y: hour) and nitrogen inputted ($x: NH_4-N mg/l$) in RBC system was as followed: $y=3.51+7.76 lnx (r^2=0.936)$. At ammonia concentration $2 mg/l$, it took 10 hour for removal of ammonia in the RBC system. However, at ammonia concentration of $5 and 16.5 mg/l$, it took 16 and 27 hours, respectively. There was a decreasing tencency of an increasing ammonia in the rearing water. Finally, the ammonia removal rate in the RBC system increased with the rise of total ammonia concentration up to $16.5 mg/l$.

  • PDF

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.