• Title/Summary/Keyword: 수력학적 계수

Search Result 27, Processing Time 0.022 seconds

Hydrodynamic Entrance Lengths and Entrance Correction Factors for a POWER-LAW Fluid in a Circular Duct (원관에서 POWER-LAW 유체의 수력학적 입구길이와 입구보정계수에 관한연구)

  • 오광석
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.261-266
    • /
    • 1995
  • 원관에서 power-law 유체에 대하여 수력학적 입구길이와 입구보정계수를 측정할수 있는 새로운 방법이 개발되었다. 유변학적 성질을 측정할수 있는 긴관과 입구보정계수를 측 정할수 있는 짧은 관을 가진 새로운 모세관 점도계를 이용하여 증류수를 실험한 결과 유변 학적 성질과 입구 보정계수가 표준값과 비교하여 1%안의 오차를 얻었다. Power-law 유체 에 대한 해석 및 실험결과(Carbopol 960 용액)도 이미 보고된 값과 $\pm$6% 이내로 잘 일치하 였다.

  • PDF

Hydrodynamic Diffusivity of Spherical Particles Suspended in Polymer Solution (고분자용액에 분산된 구형입자의 수력학적 확산계수)

  • 한민수
    • The Korean Journal of Rheology
    • /
    • v.9 no.4
    • /
    • pp.183-189
    • /
    • 1997
  • 본 연구에서는 고분자용액을 분산매로한 현탁액 내에서 입자의 수력학적확산에 관 한 실험적인 연구를 수행하여다. 입자로는 평균직경 275마이크론의 polymethlmethacrylate (PMMA)구형입자를 사용하였고, 분산매로는 PMMA 입자와 밀도르 맞춘 글리세린과 에틸 렌글리콜의 혼합용액에 고분자를 첨가하여 사용하였다. 고분자로는 분자량 6백만의 시약용 폴리아크릴아마이드를 사용하였다. 입자농도는 50%이었다. 용액의 농도는 0∼700ppm이었으 며 이러한 용액은 전단박화현상을 나타내지 않았다. 확산계수는 쿠엣장치 내에서 입자가 두 원통사이에서 아래쪽의 빈 공간으로 확산할 때 시간에 따른 점도측정결과로부터 예측하여 다. 본 연구의 결과 뉴튼성유체의 경우와는 달리 무차원확산계수(D/2)가 일정하지 않으며 전단율이 증가될수록 점점 감소하는 현상을 나타내었다. 고분자의 농도가 증가하는 경우에 는 무차원 확산계수가 감솨는 것을 볼수있었다. 이러한 무차원 확산계수의 감소는 유동하는 현탁액 내에서 입자간의 상호작용이 뉴튼성유체에 비하여 가역적인 것에 기인하는 것으로 판단된다.

  • PDF

Hydraulic Characteristics of Branching and Merging of Channels in Regenerative Cooling Passage in Liquid Rocket Combustors (채널의 분기 및 병합이 있는 액체로켓 연소기 재생냉각 유로에서의 수력학적 특성)

  • Kim, Hong-Jip;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1087-1093
    • /
    • 2008
  • Regenerative cooling passage to guarantee the thermal survivability in high performance rocket engine combustors could have complex configurations of the branching/merging of channels and flow turning, etc. By applying the classical hydraulic coefficients which can be found in the literature according to the flow conditions, hydraulic characteristics in regenerative cooling passages can be obtained effectively through dividing the pressure loss into friction loss and local resistance loss. Satisfactory agreement has been obtained by comparing the present results with experimental measurement of water flow test. In addition, the present results were in good agreement with CFD results when the actual coolant, kerosene was used. Therefore, the application of the present method is expected to be useful to design regeneratively cooled combustors.

Effects of Drag Models on the Hydrodynamics and Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기의 수력학적 특성 및 열전달에 항력 모델이 미치는 영향에 대한 연구)

  • Kang, Seung Mo;Abdelmotalib, Hamada;Ko, Dong Guk;Park, Woe-Chul;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.861-869
    • /
    • 2015
  • In this study, wall to bed heat transfer and hydrodynamic characteristics in a conical fluidized bed combustor was investigated using computational fluid dynamics method. A two-fluid Eulerian-Eulerian model was used with applying the kinetic theory for granular flow(KTGF). The effects of the two drag models, Gidaspow and the Syamlal-O'Brien model, different inlet velocities($1.4U_{mf}{\sim}4U_{mf}$) and different particle sizes on the hydrodynamics and heat transfer were studied. The results showed that the hydrodynamic characteristics such as bed expansion ratio and pressure drop were not affected significantly by the drag models. But the heat transfer coefficient was different for the two drag models, especially at lower gas inlet velocities and small particle sizes.

Measurements of Turbulent How in $5\times{5}$ PWR Rod Bundles With Spacer Grids (지지격자를 갖는 $5\times{5}$ PWR 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.263-273
    • /
    • 1992
  • The study on the velocity distribution and the pressure drop characteristic of the nuclear fuel assembly is of importance for the thermal hydraulic design and safety analysis. The purpose of this experimental study is to investigate the hydraulic mixing behind the different kinds of spacer grids in the now or rod bundles. In this study, the detailed hydraulic characteristics in subchannels of 5$\times$5 PWR(Pressurized Water Reactor) rod bundles were measured using one-component He-Ne LDV(Laser Doppler Velocimeter). Measurements of the axial velocity, turbulent intensities and pressure drops were peformed Lateral velocity, turbulent intensities and Reynolds shear stress were also measured by adjust-ing LDV alignment. Friction factors in rod bundles and loss coefficients for spacer grids were evaluated from the measured pressure drops. Hydraulic mixing performance for different kinds of spacer grids could be investigated by estimating the turbulent cross-flow mixing rates between neighboring subchannels.

  • PDF

Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds (삼상 역 유동층의 수력학, 열전달 및 물질전달 특성)

  • Kang, Yong;Lee, Kyung Il;Shin, Ik Sang;Son, Sung Mo;Kim, Sang Done;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.451-464
    • /
    • 2008
  • Three-phase inverse fluidized bed has been widely adopted with its increasing demand in the fields of bioreactor, fermentation process, wastewater treatment process, absorption and adsorption processes, where the fluidized or suspended particles are small or lower density comparing with that of continuous liquid phase, since the particles are frequently substrate, contacting medium or catalyst carrier. However, there has been little attention on the three-phase inverse fluidized beds even on the hydrodynamics. Needless to say, the information on the hydrodynamics and transport phenomena such as heat and mass transfer in the inverse fluidized beds has been essential for the operation, design and scale-up of various reactors and processes which are employing the three-phase inverse beds. In the present article, thus, the information on the three-phase inverse fluidized beds has been summarized and reorganized to suggest a pre-requisite knowledge for the field work in a sense of engineering point of view. The article is composed of three parts; hydrodynamics, heat and mass transfer characteristics of three-phase inverse fluidized beds. Effects of operating variables on the phase holdup, bubble properties and particle fluctuating frequency and dispersion were discussed in the section of hydrodynamics; effects of operating variables on the heat transfer coefficient and on the heat transfer model were discussed in the section of heat transfer characteristics ; and in the section of mass transfer characteristics, effects of operating variables on the liquid axial dispersion and volumetric liquid phase mass transfer coefficient were examined. In each section, correlations to predict the hydrodynamic characteristics such as minimum fluidization velocity, phase holdup, bubble properties and particle fluctuating frequency and dispersion and heat and mass transfer coefficients were suggested. And finally suggestions have been made for the future study for the application of three-phase inverse fluidized bed in several available fields to meet the increasing demands of this system.

Hydrodynamic Study in the Cold CFB Reactor with 3-Cyclones (3개의 사이클론 갖는 순환유동층에서의 수력학적 특성 연구)

  • 이종민;김재성;김종진
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.57-60
    • /
    • 1999
  • 순환유동층 보일러는 연소로 (상승관: riser)내에 공기를 고속으로 주입하여 비말동반되는 고체입자를 사이클론에서 포집 하여 재주입하는 유동층을 이르는 것으로, 난류유동층(turbulent fluidized bed), 고속유동층(fast fluidized bed) 그리고 희박상 유동(dilute phase flow) 영역에서 조업이 이루어진다. 순환유동층은 비교적 높은 기체 유속에서 조업이 이루어지기 때문에 고체입자의 혼합 및 비산 그리고 재순환이 격렬하게 이루어지고, 기-고체간 접촉효율 및 전열계수가 높아 전체적인 처리량 및 효율이 좋은 장점을 가지고 있다.(중략)

  • PDF

A Numerical Analysis for Estimations of Osmotic Pressure of Colloidal Suspension and Gradient Diffusion Coefficient of Particles from Permeate Flux Experiments (투과플럭스 실험으로부터 콜로이드 서스펜션의 삼투압과 입자의 구배확산계수 산출을 위한 수치적 해석)

  • 전명석
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.90-96
    • /
    • 2002
  • A novel methodology on the calculations of osmotic pressure and gradient diffusion coefficient has been provided ill the present study, by applying a succinct numerical analysis on the experimental results. Although both the osmotic pressure and the gradient diffusion coefficient represent a fundamental characteristic in related membrane filtrations such as microfiltration and ultrafiltration, neither theoretical analysis nor experiments can readily determine them. The osmotic pressure of colloidal suspension has been successfully determined from a relationship between the data of the time-dependent permeate flux, their numerical accumulations, and their numerical derivatives. It is obvious that the osmotic pressure is gradually increased, as the particle concentration increases. The thermodynamic coefficient was calculated from the numerical differentiation of the correlation equation of osmotic pressure, and the hydrodynamic coefficient was evaluated from the previously developed relation for an ordered system. Finally, the estimated gradient diffusion coefficient, which entirely depends on the particle concentration, was compared to the previous results obtained from the statistical mechanical simulations.

A Study on the Measurement of Local Void Fraction (수직사각 유로내에서의 국부적 기포계수 측정에 관한 연구)

  • B.J. Yun;Kim, K.H.;Park, G.C.;C.H. Chung
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.168-177
    • /
    • 1992
  • The importance of the study of two phase flow phenomena has increased for both fuel performance and safety analysis of nuclear power plants. In the analysis of two phase flow system, an accurate prediction of local void fractions is very important. In this study, a vertical rectangular subchannel having 4 electrically heated rods is constructed for the measurement of local void fraction under two phase flow. The measurement has been conducted by electrical conductivity probes and signal processing circuit which are known to be adequate to measuring local void fraction. Also experiments are performed with varying the inlet flow rate to search for radial void fraction profile accordingly to the different flow rate even with the same averaged void fraction. From the result of experiments, the validity of electrical conductivity probe and electrical circuit is confirmed.

  • PDF

A Study on Slip Behavior of Fiber Preform by High Speed Resin Flow in High Pressure Resin Transfer Molding (고압 RTM 공정에서 고속 수지 유동에 의한 섬유 보강재의 변형 거동에 관한 연구)

  • Ahn, Jong-Moo;Seong, Dong-Gi;Lee, Won-Oh;Um, Moon-Kwang;Choi, Jin-Ho
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper presents the slip behavior of composite fabrics by high speed resin flow in high pressure resin transfer molding. In order to observe the fiber deformation behavior, we constructed the measuring equipment for friction coefficient between fiber and mold, and the monitoring system for deformation of fiber preform in high-pressure RTM process. Coulomb friction coefficient and hydrodynamic friction coefficient between fiber preform and mold were measured and the external force induced by fluid flow causing the deformation of fiber preform was measured. Friction force calculated by friction coefficient and the external force upon fiber deformation were compared, which showed that preform deformation occurred when the external force was bigger than the friction force. The slip behavior of the fiber preform was mainly influenced by the volume fraction of fiber preform and the friction coefficient.