• Title/Summary/Keyword: 수두 손실

Search Result 93, Processing Time 0.019 seconds

The Monitoring on Gradual Change of Seepage Blocking State with the Hydraulic Head Loss Rate Change According to Passage of time in Sea Dike Embankment (수두손실률의 경시변화에 의한 방조제 제체의 점진적인 차수상태 변화 감시)

  • Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • In this study it was adopted on sea dike monitoring that the safety monitoring with statistical limits which was adapted usually on safety monitoring by measuring pressures, stresses or deformations. And also the hydraulic head loss rate change according to passage of time was calculated for the purpose of safety monitoring. Safety monitoring by setting the statistical limit on the measured pore water pressure graphs need to be supplemented with an additional method of monitoring because the difference between the rise and fall of the tide was irregular. Safety monitoring by the limits set from values predicted by linear regression and standard errors on the hydraulic head loss graph was not affected by irregularity of tide. But if the condition of an embankment is changed gradually and slowly, it will not be detected on the hydraulic head loss graph. The graph of hydraulic head loss rate for every 24 hours vs date showed clearly that the sea water blocking state was getting better or not even though it was changed gradually and slowly.

The Estimation of Compacted State on Sea Dike Embankment with the Interrelationships Between the Hydraulic Head Loss Rate, the Hydraulic Conductivity and the Void Ratio (수두손실률, 투수계수 및 공극비의 상호관계를 통한 제체의 다짐상태 평가)

  • Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.11-23
    • /
    • 2015
  • In this study the laboratory test for hydraulic conductivity and the seepage analysis with finite element method on measurement section of sea dike embankment were performed for the purpose of estimating the relative density of embankment from the measured pore water pressures, and both results of the test and the analysis were coupled with the method of estimating seepage blocking state with the hydraulic head loss rate in sea dike embankment. The relationship of void ratio vs hydraulic head loss rate was obtained by setting hydraulic conductivity as common ordinate on the relationships between the void ratio and the hydraulic conductivity and between the hydraulic conductivity and the hydraulic head loss rate. The void ratio on the segment between measuring points was calculated from the coupled relationship of the void ratio vs the hydraulic conductivity. The allowable upper and lower limits of hydraulic head loss rate and those of void ratio on the safety were generated from the coupled relationship between the laboratory compaction test and the sedimentation test. Current hydraulic head loss rate and void ratio were evaluated in the allowable range between upper and lower limits.

Comparison of the filtration performance by different media in pretreatment of seawater desalination by reverse osmosis (여재 종류에 따른 역삼투법 해수담수화 시설 전처리 여과공정의 성능비교)

  • Kim, Seung-Hyun;Yoon, Jong-Sup;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.215-222
    • /
    • 2009
  • This study compares the performance of the filters with various media in pretreatment of seawater desalination by reverse osmosis. For this purpose, Masan bay seawater is used as raw water. The filter performance is evaluated by the filtrate quality and the head loss development. Five media is selected in this study: anthracite, $Filtralite^{(R)}$, sand, Pumice, $AFM^{(R)}$. These media are used in combination for dual media filter and alone for mono media filter. The comparison results show that NC0.8-1.6 is the best $Filtralite^{(R)}$. The dual media filter of NC0.8-1.6 and sand outperformed other filters in particle removal. The dual media filter of anthracite and sand showed good performance in organic removal. The mono media filter of Pumice produced the similar filtrate quality as the mono media filter of sand although the effective size of Pumice is considerably greater than that of sand. Due to big size, head loss development is maintained slow in the filtration of Pumice.

Skeletonization of Complex Water Distribution System (상수관망시스템의 골격화 방안 연구)

  • Choi, Jeong Wook;Kim, Kyung Wan;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.157-157
    • /
    • 2015
  • 최근 들어, 송 배수 시스템의 펌프운영을 최적화하여 운영비용을 절감하기 위한 연구가 활발히 진행되고 있다. 펌프운영을 모의하기 위해서는 수 일간의 시간모의가 필수적이며, 최적화 알고리즘 등과의 연계를 통한 시뮬레이션이 필요한 경우가 많다. 하지만, 대규모 네트워크의 경우 관로 및 절점의 수가 수천, 혹은 수 만개에 달해 수리해석 및 최적화에 소요되는 시간이 길어지는 문제가 발생한다. 이에 본 연구에서는 효율적인 수리해석을 위해 상수관망 네트워크를 골격화(skeletonization)하는 방법을 제안한다. 상수관망시스템의 골격화는 본래의 상수관망 수리 거동을 변화시키지 않는 범위에서 관로와 절점의 삭제, 통합을 통해 복잡한 상수관망을 단순화하는 과정이다. 이러한 골격화 방법은 단순골격화 방법과 등가길이관 방법(Equivalent Length Pipe Method)으로 구분할 수 있다. 단순 골격화 방법은 해당 상수관망 수리해석에 큰 영향을 미치지 않는 소구경관을 삭제하거나, 특정 구역의 여러 수요절점을 하나의 수요절점으로 통합하는 방법이다. 등가길이관 방법은 관경과 연장이 상이한 복수의 관에 동일한 유량이 흐르는 경우, 관경, 연장, 조도계수 등을 조절하여 동일한 수두 손실이 발생하는 하나의 관으로 통합하는 방법이다. 국내에 실제 운영되고 있는 지방상수도를 대상으로 골격화를 진행하였으며, 수리해석 프로그램은 미국 환경청에서 개발한 EPANET을 사용하였다. 본 연구에서 개발한 골격화 기법을 통해 대규모 상수관망의 해석에 소요되는 시간을 단축할 수 있으며, 실제 상수관망의 운영에 도움이 될 것으로 기대한다.

  • PDF

Removal of As(III) by Pilot-Scale Filtration System Separately Packed with Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사를 분리 충진시킨 파일럿 여과시스템에 의한 3가 비소 제거)

  • Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.878-883
    • /
    • 2006
  • Removal efficiency of As(III) was investigated with a pilot-scale filtration system packed with an equal amount(each 21.5 kg) of manganese-coated sand(MCS) in the bottom and iron-coated sand(ICS) in the top. Height and diameter of the used column was 200 cm and 15 cm, respectively. The As(III) solution was introduced into the bottom of the filtration system with a peristaltic pump at a speed of $5{\times}10^{-3}$ cm/s over 148 days. Breakthrough of total arsenic in the mid-sampling position(end of the MCS bed) and final-sampling position(end of the ICS bed) was started after 18 and 44 days, respectively, and then showed a complete breakthrough after 148 days. Although the breakthrough of total arsenic in the mid-sampling position was started after 18 days, the concentration of As(III) in this effluent was below 50 ppb up to 61 days. This result indicates that MCS has a sufficient oxidizing capacity to As(III) and can oxidize 92 mg of As(III) with 1 kg of MCS up to 61 days. When a complete breakthrough of total arsenic occurred, the removed total arsenic by MCS was calculated as 79.0 mg with 1 kg MCS. As variation of head loss is small at each sampling position over the entire reaction time, it was possible to operate the filtration system with ICS and MCS for a long time without a significant head loss.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF

Experimental Investigation of Water Discharge Capability According to Shape of Sluice for Tidal Power Generation - I. Physical Experiment (조력발전용 수문 형상에 따른 통수성능에 관한 실험적 연구 - I. 수리모형실험)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyu-Sang;Kim, Duk-Gu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • An hydraulic experiment was carried out in an open channel flume in order to improve the technique of designing shape of the sluice used for tidal power generation, which greatly affects the economical efficiency of the construction of a tidal power plant. To predict the influence of change in the major design parameters relating to the sluice shape on the water discharge capability of the sluice, it was necessary to perform a precise experiment that is discriminated to previous feasibility studies or design projects. For this purpose, by installing various flow straighteners and rectifying structures inside the water supply system and the rectifying tank, the flow in the flume was stabilized as tranquil as possible. In addition, the measuring instruments and the location of installing them were carefully determined so as to minimize the errors intervened during the measurement of water discharge and water level. The method of estimating head difference between upstream and downstream of the sluice was also developed by taking account of the head loss due to the friction at the bottom and side walls in the flume.

A Study on Comparison of the Darcy-Weisbach and Hazen-Williams Equation (Darcy-Weisbach와 Hazen-Williams Equation 비교 연구)

  • Kim, Tae-Kyoungi;Rhee, Kyoung-Hoon;Sun, Byoung-Jin;Chio, Cheong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.421-428
    • /
    • 2007
  • Many engineering problems on the pipeline flow use continuity, energy, friction loss head equation. To calculate friction loss head in a pipeline, Darcy-Weisbach and many average velocity equations can be used and Hazen-Williams equation is used frequently in the pipe network for the water supply systems. Darcy-Weisbach equation is a general one acquired from applying Bernoulli's equation in the pipeline flow and Hazen-Williams equation is a experimental one in case that pipe velocity is below 3m/sec and pipe diameter is over 50mm. In this study, comparing Darcy-Weisbach with Hazen-Williams equation, relation f and C that are expressed as roughness coefficients of those equations is explained. Next, head losses calculated from using those equations are compared and those are applied in realistic pipelines. Comparing f with C, the f is decreasing linearly according to increase of the Reynolds number Re and increasing in case the C is decreasing. additionally, the C is increasing up to a point and then is decreasing according to increase of the Re. Next, the C is increasing and Re's range for increase of the C lengthens in case of decreasing of the relative roughness ${\varepsilon}/d$. Comparing head losses acquired from the two equations, head loss appears large in case that the C is decreasing and the ${\varepsilon}/d$ is increasing. additionally, Head loss calculated by the Darcy-Weisbach equation varies larger than one by Hazen-Williams equation in regard of the Re. Next, change aspect of head loss acquired by the C is distinguished more clearly than the one by the ${\varepsilon}/d$.

A Numerical Study on the Flow Characteristics of Grouts in Jointed Rock (절리암반에서의 주입재 유동특성에 관한 수치해석적 연구)

  • 김문상;문현구
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.123-138
    • /
    • 1995
  • To study the grout flow in jointed rock, various nurser characteristics of grout in a single joint plane and two-dperorbed. The joint plane is described as a channel nets properties of grout are considered. To deal with various prob generator and i oint network generator are used. A loss of head due to friction in laminal flow is adopted to between the grout and joint wall. The grout flow is stopped, setting time. To consider this phenomenon, the idea of maxim From the results of numerical simulation on the single jai etration of grout is confirmed. The basic principles for the ation and the selection of the grout are presented. Correlation ant and grouting pressure is defined by analyzing the effects grout flow. Finally, the grout flow around a tunnel is simulate ins grouting operation for jointed rock mass.

  • PDF

Integrated Water Distribution Network System using the Mathematical Analysis Model and GIS (수리해석 모형과 GIS를 이용한 통합 용수배분 시스템)

  • Kwon, Jae-Seop;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.21-28
    • /
    • 2001
  • In this study, GNLP(GIS linked non-linear network analysis program) for pipeline system analysis has been developed. This GNLP gets the input data for pipeline analysis from existing GIS(geographic information system) data automatically, and has GUI(graphic user interface) for user. Non-Linear Method was used for hydraulic analysis of pipe network based on Hazen-Williams equation, and Microsoft Access of relational database management system(RDBMS) was used for the framework of database applied program. GNLP system environment program was improved so that a pipe network designer can input information data for hydraulic analysis of pipeline system more easily than that of existing models. Furthermore this model generate output such as pressure and water quantities in the form of a table and a chart, and also produces output data in Excel file. This model is also able to display data effectively for analysed data confirmation and query function which is the core of GIS program.

  • PDF