• Title/Summary/Keyword: 수두강하비

Search Result 5, Processing Time 0.017 seconds

확산능을 이용한 지하 LPG 저장기지의 W/C 효율성 진단

  • 한일영;정일문;유홍정
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.31-34
    • /
    • 2001
  • 지하 LPG 저장기지의 수벽시설이 저장공동 주변 암반에 미치는 영향을 진단하기 위해서 수벽시설의 주입압력을 강하시키면서 간극수압계와 관측공에서의 지하수두 변화를 모니터링하였다. 수벽시설의 관측지점에 대한 효율성은 수치해석으로부터 수벽시설과 관측지점간 매질의 확산능을 구함으로써 분석하였다. 확산능 산출결과를 검증하기 위해서 수벽시설의 압력강하에 따른 관측지점에서의 수두강하비와 수두강하율을 구하여 확산능 결과와 비교하였다. 비교결과, 확산능은 수두강하비, 수두강하율과 일관된 변화를 보여주었으며 확산능의 값이 클수록 수벽공의 압력변화에 따른 관측지점에서의 반응성이 양호함을 나타내었다

  • PDF

An Analysis of the Relationships between Quantity and Drawdown at the Onyang Hot Spring Area (온양온천지구에서의 양수량-수위강하 관계 해석)

  • Jeong, Ji-Gon;Lee, Chol-Woo
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.177-185
    • /
    • 2007
  • Most of hot springs don't spring out naturally but are pumped by submersible pumps in Korea. When pumped piezometric head in a well is dropped with proportion to quantity. This research investigates relationships between quantity and drawdown at the Onyang hot spring area. There are 38 wells at this area and the depths of wells range from 124 m to 303 m. Piezometric heads of 4 wells were observed for about 10 months. Fluctuation patterns of piezometric heads seem to be a sine curve with a you period by a high demand and a slack season. Drawdowns of fluctuations were about 98-139 m depth to water table when wells were pumped at $2,300-4,800m^3/day$. A equation was made through analyzing quantity and drawdown.

Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests (단계양수시험으로부터 우물수두손실 항을 이용한 단열의 고.저 투수성 평가)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The equation of the step-drawdown test "$s_w=BQ+CQ^p$" written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated $C$ (well head loss coefficient) and $P$ (well head loss exponent) value of well head losses ($CQ^p$) ranged $3.689{\times}10^{-19}{\sim}5.825{\times}10^{-7}$ and 3.459~8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The $C$ and $P$ value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of $C$ and $P$ value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between $C$ and $P$ value turned out very useful to interpret hydraulic properties of the fractured rocks.

The Pore Volume of Groundwater Level Drawdown Zone Through Slug/Bail Tests in Sand and Silt Soils (모래와 실트의 혼합층에서 순간충격시험에 의한 지하수위 강하구역의 공극체적 산정)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Chung, Sang-Yong;Yang, Sung-Il;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Slug/bail tests were conducted in sand layer (sbt-1 well), silty sand layer (sbt-2 well), and mixed sand and silty sand layer (sbt-3 well). Hydraulic conductivity and specific storage coefficient were estimated through slug/bail tests. Pore volumes of groundwater level drawdown zone for bail test were estimated by using hydraulic conductivity and specific storage coefficient. KGS model was most suitable interpretation method of slug/bail tests. Average hydraulic conductivity for slug/bail tests were estimated to be $6.65{\times}10^{-5}$ m/sec in sbt-1 well, $6.33{\times}10^{-6}$ m/sec in sbt-2 well, and $3.72{\times}10^{-5}$ m/sec in sbt-3 well. Average specific storage coefficient for slug/bail tests were estimated to be 0.0225 in sbt-1 well, 0.0177 in sbt-2 well, and 0.0259 in sbt-3 well. Dimensionless time and dimensionless wellbore storage were estimated by use of transmissivity, storativity, test time, and specification of test wells. And, dimensionless drawdown were selected by parameter ${\alpha}\;and\;{\beta}$ parameter from Cooper et al. (1967). Radius of influence were estimated by estimated dimensionless time, dimensionless wellbore storage, and dimensionless drawdown. The average radius of influnce for slug/bail tests were estimated to be 1.377 m in sbt-1 well, 1.253 m in sbt-2 well, and 1.558 m in sbt-3 well. Pore volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,636cm^3$ in sbt-1 well, $71,561cm^3$ in sbt-2 well, and $100,418cm^3$ in sbt-3 well. Pore volume excepted well volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,410cm^3$ in sbt-1 well, $71,353cm^3$ in sbt-2 well, and $100,192cm^3$ in sbt-3 well.

Numerical Simulation of The Pressure-Flow Control Characteristics of Shunt Valves Used to Treat Patients with Hydrocephalus (수두층 치료용 션트밸브의 압력-유량 제어특성 수치해석)

  • 장종윤;이종선;서창민
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.403-412
    • /
    • 2001
  • The Present study analyzed the pressure-flow characteristics of a Korean shunt valve. Changes in the characteristic currie depending on the design parameters were also investigated. The Korean shunt valve used in the present study was constant pressure type and our analyses were validated through experiments. We applied fluid-structure interaction to solve the flow dynamic Problem because the small diaphragm in the valve was made from flexible silicone elastomers. Considering the material nonlinearity of the hyper-elastic material. the Mooney-Rivlin approximation was employed. The results of the numerical analyses were close to the experimental results The major Pressure drop was observed to happen in the small diaphragm. The slope of the pressure-flow characteristic curve was computed to be 0.37mm$H_2O$.hr/cc, which was similar to the average value of commercial shunt valves. 0.40mm$H_2O$.hr/cc. Therefore. our valves analyzed in the Present study showed a Proper Pressure control characteristics of the constant pressure type shunt valves. The opening pressure could be controlled by adjusting the amount of predeflection of the valve diaphragm. In order to obtain opening pressures of 25mm$H_2O$ and 80mm$H_2O$, respectively, and the required predeflection was found to be 10.2$\mu$m and 35.3$\mu$m. The flow orifice size was found to be within 10$\mu$m during valve operation Therefore, Precision design and manufacturing techniques are necessary for successful operations of the shunt valve. The study indicated the amount of predeflection as well as the magnitude of corner rounding of the diaphragm edge are important design parameters to influence the slope of the pressure-flow characteristic curve.

  • PDF