• Title/Summary/Keyword: 수동 속도지원장치

Search Result 2, Processing Time 0.013 seconds

A study on Korean drivers' acceptance and traffic sign conditions assessment for Speed Assistance Systems (속도제한 지원장치에 대한 운전자 인식도 및 도로환경 분석)

  • Lee, Hwa Soo;Cho, Jae Ho;Yim, Jong Hyun;Lee, Hong Guk;Chang, Kyung Jin;Yoo, Song Min
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2015
  • This study examined the Korean drivers' acceptance of SAS(Speed Assistance systems) and traffic sign conditions in Korea roads for SLIF(Speed Limit Information Function) that is a part of SAS. Exceeding the speed limit is a factor in the severity of many road accidents and SAS would help the driver to observe a speed limit by warning and/or effectively limiting the speed of the vehicle. SAS are in the initial phase in Korea, Korean drivers could not be familiar with automatical speed limiting during driving, SAS interface design would be considered to be more readily acceptable to the public. And advanced SAS have been introduced onto the market which are able to inform the driver of the current speed limit based on camera and/or digital maps based SLIF. These systems are based on external data using sensors, so environmental conditions are an important factor which could cause malfunction of SLIF functions.

One-key Keyboard: A Very Small QWERTY Keyboard Supporting Text Entry for Wearable Computing (원키 키보드: 웨어러블 컴퓨팅 환경에서 문자입력을 지원하는 초소형 QWERTY 키보드)

  • Lee, Woo-Hun;Sohn, Min-Jung
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Most of the commercialized wearable text input devices are wrist-worn keyboards that have adopted the minimization method of reducing keys. Generally, a drastic key reduction in order to achieve sufficient wearability increases KSPC(Keystrokes per Character), decreases text entry performance, and requires additional effort to learn a new typing method. We are faced with wearability-usability tradeoff problems in designing a good wearable keyboard. To address this problem, we introduced a new keyboard minimization method of reducing key pitch. From a series of empirical studies, we found the potential of a new method which has a keyboard with a 7mm key pitch, good wearability and social acceptance in terms of physical form factors, and allows users to type 15.0WPM in 3 session trials. However, participants point out that a lack of passive haptic feedback in keying action and visual feedback on users' input deteriorate the text entry performance. We have developed the One-key Keyboard that addresses this problem. The traditional desktop keyboard has one key per character, but the One-key Keyboard has only one key ($70mm{\times}35mm$) on which a 10*5 QWERTY key array is printed. The One-key Keyboard detects the position of the fingertip at the time of the keying event and figures out the character entered. We conducted a text entry performance test comprised of 5 sessions. The participants typed 18.9WPM with a 6.7% error rate over all sessions and achieved up to 24.5WPM. From the experiment's results, the One-key Keyboard was evaluated as a potential text input device for wearable computing, balancing wearability, social acceptance, input speed, and learnability.

  • PDF