• Title/Summary/Keyword: 수괴분석

Search Result 116, Processing Time 0.028 seconds

Seasonal Distribution of Oceanic Conditions and Water Mass in the Korea Strait and the East China Sea: Correction of Atmosphere Cooling Effect (대한해협과 동중국해의 해황과 수괴의 계절분포: 대기에 의한 냉각효과 보정)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul;Kwak, Chong-Heum
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.47-64
    • /
    • 2001
  • Water mass classification was conducted using the data of 1985 and 1986 in the East China Sea and the Korea Strait. Kuroshio water (type K) and mixed water (type I) were broadly distributed at 50 m depth in winter and spring, and mixed waters (type I to IV) were distributed in summer and autumn. At 100 m depth of the East China Sea, and mixed water (type I) was broadly distributed in winter and spring, and mixed waters (type I to III) were in summer, and type I was in autumn. Water mass in summer is the most influenced from the Chinese coastal water. In the Korea Strait, the Kuroshio water (type K) was the main water mass in winter and spring, and mixed waters (type I to IV) were in summer and autumn. If temperatures are corrected to remove the cooling effect from the atmosphere, the Kuroshiowater region was diminished, however the mixed water region was expanded in winter and spring. This shows that although the Kuroshio water appears to be a main water mass of the East China Sea and the Korea Strait in winter andspring, in reality the mixed water (type I) which is slightly changed from the Kuroshio water (type K) widely distributed. The tongue-shaped distribution of low density surface water indicates that the water mixed with the Chinese coastal water flows to the Korea Strait and the Okinawa in summer.

  • PDF

Characteristics of Hypoxic Water Mass Occurrence in the Northwestern Gamak Bay, Korea, 2017 (2017년 한국 가막만 북서내만해역 빈산소수괴 발생의 특성)

  • Jeong, Hui-Ho;Choi, Sang-Duk;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.708-720
    • /
    • 2021
  • As hypoxia adversely affects the marine environment in northwestern Gamak Bay every summer, the present study determined its comprehensive occurrence mechanisms using the Multiple Regression Analysis (MRA) and suggested management directions based on the primary MRA factors. The first hypoxia occurred by thermocline related to weather conditions, with organic matter deposited inside the bay on 26th June, 2017. Additionally, on 12th July, halocline was also developed by increased rainfall, and the hypoxia was most expanded horizontally and vertically. The primary factors were the stratification and deposited organic matter. In contrast, the hypoxia correlated to phytoplankton growth and deposited organic matter on 8th August was diminished with remarkably less precipitation. However, the stable halocline was caused by massive precipitation, and the reproduced phytoplankton re-generated the expanded hypoxia on 16th August despite a short sampling interval. Subsequently, the hypoxia influenced by the deposited organic matter spread shallowly along the seafloor on 13th September as the extinction period. These results suggest that stratification alleviation technologies, and the improvement and removal of the organic matter deposited on the surface sediment are necessary.

제주도 서남부 연안역의 부유성 섬모충류의 종조성과 월별변화

  • 이준백;김요혜
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.10a
    • /
    • pp.145-145
    • /
    • 2000
  • 원생동물에 속하는 부유성 섬모충류는 해양 생태계 내에서 저차와 고차생산단계를 잇는 먹이 사슬의 중간역할을 하며 그 분포가 수온과 밀접한 관계가 있어 수괴 지표 종으로써 수괴분석과 해류분석에 이용되고 있는 생물이다. 이 부유성 섬모충류는 피갑을 갖는 유종섬모충류(tintinnids)와 피갑을 갖고 있지 않는 무갑섬모충류(naked ciliates)로 구분된다. (중략)

  • PDF

동해고유수가 내만 수괴의 연직구조에 미치는 영향

  • 윤한삼;류청로;이인철;김헌태
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.164-165
    • /
    • 2003
  • 본 연구는 영일만 만내 수괴의 거동에 영향을 미칠 것으로 판단되는 가용 강우량, 증발량, 바람 등 기상조건의 영향을 검토ㆍ분석하고, 그림 1의 영일만 정선해양관측의 수온ㆍ염분 자료와 연안정지 수온관측자료를 수집ㆍ분석하여 영일만 해역에서의 동해 고유수와 만내 연안수와의 혼합과정을 규명하고자하였다. 이를 통해 영일만수괴의 만내 연안수와 동해 고유수와의 상호관련성과 만내 해수의 수평ㆍ연직순환류 발생 메카니즘에 대해서 고찰하고자 하였다. (중략)

  • PDF

Analysis of false alarm possibility using simulation of back-scattering signals from water masses (수괴 산란신호 모의를 통한 오탐 가능성 분석)

  • Ha, Yonghoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.99-108
    • /
    • 2021
  • In this paper numerical wave propagation experiments have been performed to visually confirm whether the signals scattered by water masses can be a false alarm in active sonar. The numerical environments consist of exaggerated water masses as targets in free space. Using a pseudospectral time-domain model for irregular boundary, the back-scattered signals have been calculated and compared with analytic solutions. Also, the sound propagation was simulated. Consequently, it was verified that water masses themselves could not be detected as a false target.

동중국해 북부해역 수온, 염분의 분포 변동 특성

  • Jang, Lee-Hyeon;Kim, Sang-U;Go, U-Jin;Geleekko, Yamada;Seo, Yeong-Sang
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.331-335
    • /
    • 2007
  • 본 연구에서는 장기간의 현장관측 수온, 염분자료를 분석하여 동중국해 북부해역에서 계절별 수온, 염분의 변동 특성을 조사하였다. 표층의 경우 춘계 수온상승에는 공간적인 차이가 있다. 또한 서부해역($125^{\circ}E$ 이서)에서는 32 psu 이하의 저염 분포가 나타나고 제주 남서해역에서 33psu 이하의 저염수가 춘계부터 제주 주변해역으로 확장한다. 하계 표층염분은 $28.0{\sim}32.4$ psu로 연중 최저값은 보이며, 전해역 표층 염분이 33psu 이하로 저염의 양자강 희석수가 하계에 동중국해 북부해역 표층 전체에 영향을 미치고 있다. 추계의 표층수온과 염분은 동고서저형의 수평분포를 나타낸다. 수온 하강은 서부해역인 대륙 연안수역이 동부의 대마난류수역에 비해 크고, 서부해역에서 33psu 이하의 설상형 저염분포가 이시기에 남동쪽으로 관입되는 형태로 나타나 동계의 남북방향의 염분전선과 이어지게 된다. 연직해황의 경우 동계 수온과 염분은 활발한 대륙작용에 의해 전수층에서 균일한 분포를 나타내며, 대륙연안수역에서는 저온, 저염($12^{\circ}C$, 33psu 이하)의 분포를, 대마난류수역에서는 고온, 고염($16^{\circ}C$, 34.4psu 이상)분포의 지역적인 특성으로 구별된다. 춘계에는 수온약층이 형성되며, 저층에는 동계에 형성되어 대륙연안수와 외양수 사이에 고립된 $13^{\circ}C$ 이하의 냉수괴가 분포한다. 염분은 표층 저염화가 시작된다. 하계에는 양자강 유출수의 영향으로 전해역 표층에서는 30psu 이하로 전해역에서 저염화 양상이 나타나며, 표층에서 30m 층까지 매우 강한 염분약층이 형성된다. 추계 수온 엽문은 균일한 연직수온분포가 나타나며, 동부해역에서는 수심 $75{\sim}100m$사이에서 수온, 염분약층이 형성된다. 동중국해의 수괴는 뚜렷한 계절 변동을 보이며, 대마난류수역인 동부해역에서는 수괴 계절변동의 요인으로 계절 수온변동이 지배적이고, 수온변동은 춘계와 하계 사이에 가장 크다. 중앙부와 대륙연안역인 서부해역에서는 수괴 계절변동에 수온외에 염분 변화가 주요한 요인으로 작용하며, 염분은 하계와 추계 사이에 가장 변동이 크게 나타난다. 즉, 동중국해의 수괴변동에는 변동요인에 따른 공간적인 차이가 있으며, 수괴변화 특성으로 동중국해는 수온변화가 수괴변동에 직접요인이 되는 동부 대마난류수역과 염분변화가 수괴변동의 직접요인인 서부의 대륙연안수역으로 구분된다.

  • PDF

The Distributions of Copepods and Chaetognaths in the Southern Waters of Korea and Their Relationship to the Characteristics of Water Masses (한국 남해의 요각류 및 모악류의 분포와 수괴특성)

  • PARK Joo-Suck;LEE Sam-Seuk;KANG Young-Shil;LEE Byung-Don;Hun Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 1990
  • The distributions of copepods and chaetognaths in waters off the southern coast of Korea were investigated to evaluate their reliability as indicator species of different water masses. The samples for this study were collected vertically from about 5m above the bottom at 28 stations along 8 transects in three different months, February, April, and August, 1988. The sampling gear used was 0.45-meter NORPAC plankton net fitted with 0.33mm mesh. Acartia clausi, Centropages abdominalis, and Sagitta crassa were found to be reliable indicator species of neritic cold waters; Pleuromamma gracilis, Undinula darwini, Calocalanus plumulosus, Calanopia elliptica, and Sagitta enflata were of oceanic warm waters; Temora discaudata and Centropages furcatus were of neritic warm waters. According to the cluster analyses of the species found, the distinctive area in February was divisible into two regions or water masses, the coastal and off-shore regions; in April, however, it was divisible into four regions. In August, it was divisible into three areas, further indicating the strength of the Kuroshio tributaries pushing toward the coast.

  • PDF

Variations and Characters of Water Quality during Flood and Dry Seasons in the Eastern Coast of South Sea, Korea (한국 남해 동부 연안 해역에서 홍수기와 갈수기 동안 수질환경 특성과 변동)

  • Jeong, Do Hyeon;Shin, Hyeon Ho;Jung, Seung Won;Lim, Dhong Il
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • Physiochemical characters of sea waters during summer flood- and winter dry-seasons and their spatial variations were investigated along the coastal area off the eastern South Sea, Korea. Using the hierarchical clustering method, in this study, we present comprehensive analyses of coastal waters masses and their seasonal variations. The results revealed that the coastal water of the study area was classified into six water masses (A to F). During summer season, the surface water was mainly occupied by the coastal pseudo-estuarine water (water mass B) with low salinity and high nutrients and the river-dominated coastal water (water mass C) with low nutrients, respectively. The bottom water was dominated by cold water (water mass D) with very low temperature, high salinity and high nutrients, compared to masses of surface water. Notably, the water mass B, with high concentrations of nutrients (silicate and nitrogen) and low salinity, which is strongly controlled by the water quality of river freshwater, seems to play an important role in controlling the water quality and further regulating physical processes on ecosystem in the eastern coastal area of South Sea. The water mass D (bottom cold water) coupled with a strong thermocline, which exists in near-bottom layer along the western margin of Korea Strait, has a low temperature, pH and DO, but abundant nutrients. This water mass disappears in winter owing to strong vertical mixing, and subsequently may act as a pool for nutrients during winter dry-season. On the other hand, vertically well-mixed water column during the winter season was typically occupied by the Tsushima (water mass E) and the coastal water (water mass F) with a development of coastal front formed in a transition zone between them. These winter water masses were characterized by low nutrient concentration and balance in N/P ratio, compared with summer season with high nutrient concentrations and strong N-limitation. Accordingly, the analysis of water masses will help one to better chemical and biological processes in coastal area. In most of the study area, characteristically, the growth of phytoplankton community is limited by nitrogen, which is clearly different with coastal environment of West Sea of Korea, with a relative lack of phosphorus. It showed the western and the southern coasts in Korea are substantially different from each other in environmental and ecological characteristics.

Seasonal Changes in Water Masses and Phytoplankton Communities in the Western Part of South Coastal Waters, Korea (남해 서부연안의 수괴 및 식물플랑크톤 군집의 계절적 변동)

  • Jung, Seung Won;Park, Jong Gyu;Jeong, Do Hyun;Lim, Dhongil
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.4
    • /
    • pp.328-338
    • /
    • 2012
  • We investigated seasonal changes in the marine environments and phytoplankton communities in the western part of south coastal waters of Korea during May 2009 and February 2010. In multidimensional scaling analysis of in situ data obtained by shipboard observations, the coastal waters comprised four different water masses: Yellow Sea water mass (YW) of low temperature and salinity, and high suspended solids and nutrient concentrations; south-western coastal water mass (SW) of high salinity and nutrient concentrations; Tsushima Current water mass (TW) of low nutrient concentrations, and high temperature and salinity; and closed bay water mass (CW). The spatial extent of these water masses varied according to seasonal environmental characteristics. In particular, at most study sites, TW expanded during autumn toward coastal waters. Phytoplankton abundances peaked during autumn in CW and spring in YW, which coincided with periods of high nutrient concentrations. In particular, diatoms predominated, and attained an abundance of more than 90% in most water masses. However, dinoflagellates in TW comprised a proportion of approximately 20% abundance.