• Title/Summary/Keyword: 손실 원인

Search Result 1,790, Processing Time 0.036 seconds

Application of diversity of recommender system accordingtouserpreferencechange (사용자 선호도 변화에 따른 추천시스템의 다양성 적용)

  • Na, Hyeyeon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.67-86
    • /
    • 2020
  • Recommender Systems have been huge influence users and business more and more. Recently the importance of E-commerce has been reached rapid growth greatly in world-wide COVID-19 pandemic. Recommender system is the center of E-commerce lively. Top ranked E-commerce managers mentioned that recommender systems have a major influence on customer's purchase such as about 50% of Netflix, Amazon sales from their recommender systems. Most algorithms have been focused on improving accuracy of recommender system regardless of novelty, diversity, serendipity etc. Recommender systems with only high accuracy cannot satisfy business long-term profit because of generating sales polarization. In addition, customers do not experience enjoyment of shopping from only focusing accuracy recommender system because customer's preference is changed constantly. Therefore, recommender systems with various values need to be developed for user's high satisfaction. Reranking is the most useful methodology to realize diversity of recommender system. In this paper, diversity of recommender system is represented through constructing high similarity with users who have different preference using each user's purchased item's category algorithm. It is distinguished from past research approach which is changing the algorithm of recommender system without user's diversity preference level. We tried to discover user's diversity preference level and observed the results how the effect was different according to user's diversity preference level. In addition, graph-based recommender system was used to show diversity through user's network, not collaborative filtering. In this paper, Amazon Grocery and Gourmet Food data was used because the low-involvement product, such as habitual product, foods, low-priced goods etc., had high probability to show customer's diversity. First, a bipartite graph with users and items simultaneously is constructed to make graph-based recommender system. However, each users and items unipartite graph also need to be established to show diversity of recommender system. The weight of each unipartite graph has played crucial role changing Jaccard Distance of item's category. We can observe two important results from the user's unipartite network. First, the user's diversity preference level is observed from the network and second, dissimilar users can be discovered in the user's network. Through the research process, diversity of recommender system is presented highly with small accuracy loss and optimalization for higher accuracy is possible controlling diversity ratio. This paper has three important theoretical points. First, this research expands recommender system research for user's satisfaction with various values. Second, the graph-based recommender system is developed newly. Third, the evaluation indicator of diversity is made for diversity. In addition, recommender systems are useful for corporate profit practically and this paper has contribution on business closely. Above all, business long-term profit can be improved using recommender system with diversity and the recommender system can provide right service according to user's diversity level. Lastly, the corporate selling low-involvement products have great effect based on the results.

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation (CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석)

  • Kim, Suyoung;Won, Geunhye;Lee, Min Ji;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.535-543
    • /
    • 2022
  • A CPFD (Computational particle fluid dynamics) model of solar fluidized bed receiver of silicon carbide (SiC: average dp=123 ㎛) particles was established, and the model was verified by comparing the simulation and experimental results to analyze the effect of particle behavior on the performance of the receiver. The relationship between the heat-absorbing performance and the particles behavior in the receiver was analyzed by simulating their behavior near bed surface, which is difficult to access experimentally. The CPFD simulation results showed good agreement with the experimental values on the solids holdup and its standard deviation under experimental condition in bed and freeboard regions. The local solid holdups near the bed surface, where particles primarily absorb solar heat energy and transfer it to the inside of the bed, showed a non-uniform distribution with a relatively low value at the center related with the bubble behavior in the bed. The local solid holdup increased the axial and radial non-uniformity in the freeboard region with the gas velocity, which explains well that the increase in the RSD (Relative standard deviation) of pressure drop across the freeboard region is responsible for the loss of solar energy reflected by the entrained particles in the particle receiver. The simulation results of local gas and particle velocities with gas velocity confirmed that the local particle behavior in the fluidized bed are closely related to the bubble behavior characterized by the properties of the Geldart B particles. The temperature difference of the fluidizing gas passing through the receiver per irradiance (∆T/IDNI) was highly correlated with the RSD of the pressure drop across the bed surface and the freeboard regions. The CPFD simulation results can be used to improve the performance of the particle receiver through local particle behavior analysis.

Oral administration of H. syriacus L. flower ameliorates photoaging and dryness in UVB-irradiated skin (무궁화 꽃 추출물 경구투여에 의한 피부 광노화 및 건조증 개선에 관한 효과)

  • Yang, Jung-Eun;Seo, Seul A;Kang, Min Cheol;Yoon, Da Hye;Im, Tae Joon;Hwang, Eunson;Won, Kyung Hwa;Lee, Teak Hwan;Kim, Sun Yeou
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.399-407
    • /
    • 2021
  • Wrinkle formation and dryness are the most well-known symptoms of skin aging. This study investigated skin anti-aging and moisturizing effects of Mugunghwa (Hibiscus syriacus L.), the national flower of Korea. The effect of H. syriacus L. flower extract was examined in skin cells originating from humans in vitro and in hairless mice exposed to UVB in vivo. The in vivo study results showed that skin hydration-related factors such as involucrin, filaggrin, HAS1, HYAL1, and matrix metalloproteinase-I (a primary skin photoaging factor) were regulated by H. syriacus L. Additionally, epidermal thickness and collagen disruption, which resulted in wrinkle formation and skin dryness, were ameliorated by oral administration of H. syriacus L. These results indicate that H. syriacus L. flowers can play important roles in preventing aging and promoting skin moisturizing.

An Exploratory Study on the Business Failure Recovery Factors of Serial Entrepreneurs: Focusing on Small Business (연속 기업가의 사업 실패 회복요인에 관한 탐색적 연구: 소상공인을 중심으로)

  • Lee, Kyung Suk;Park, Joo Yeon;Sung, Chang Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.17-29
    • /
    • 2021
  • Recently, as social distancing have been raised due to the re-spread of COVID-19, the number of serial entrepreneurs who are closing their business is rapidly increasing. Learning from failure is a source of success, but business failure can result in psychological and economic losses and negative emotions of the serial entrepreneur. At this point, it is very important to find a way to recover the negative emotions caused by business failures of serial entrepreneurs. Recently, a strategic model has emerged to deal with the negative emotions of grief caused by business failures of serial entrepreneurs. This study identified the recovery factors from the grief of business failures of serial entrepreneurs and analyzed Shepherd's(2003) three areas: loss orientation, restoration orientation, and dual process. To this end, individual in-depth interviews were conducted with 12 small business serial entrepreneurs who challenged re-startup to identify the attributes of recovery factors that were not identified with quantitative data. As a result of the study, first, recovery factors were investigated in three areas: individual orientation, family orientation, and network orientation. It was found to help improve recovery in nine categories: self-esteem, persistence, personal competence, hobbies, self-confidence, family support, networks, religion, and social support. Second, recovery obstacle factors were investigated in three areas: psychological, economic, and environmental factors. Nine categories including family, health, social network, business partner, competitor, partner, fund, external environment, and government policy were found to persist negative emotions. Third, the emotional processing process for grief was investigated in three areas: loss orientation, restoration orientation, and dual process. Ten categories such as family, partner support, social member support, government support, hobbies, networks, change of business field, moving, third-party perspective, and meditation were confirmed to enhance rapid recovery in the emotional processing process for grief. The implications of this study are as follows. The process of recovering from the grief caused by business failures of serial entrepreneurs was attempted by a qualitative study. By extending the theory of Shepherd(2003), This study can be applied to help with recovery research. In addition, conceptual models and propositions for future empirical research were presented, which can be discussed in carious academic ways.

Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis (철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안)

  • Eunkyung Kang;Seonuk Yang;Jiyoon Kwon;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.79-105
    • /
    • 2023
  • Due to unprecedented extreme weather events such as global warming and climate change, many parts of the world suffer from severe pain, and economic losses are also snowballing. In order to address these problems, 'The Paris Agreement' was signed in 2016, and an intergovernmental consultative body was formed to keep the average temperature rise of the Earth below 1.5℃. Korea also declared 'Carbon Neutrality in 2050' to prevent climate catastrophe. In particular, it was found that the increase in temperature caused by greenhouse gas emissions hurts the environment and society as a whole, as well as the export-dependent economy of Korea. In addition, as the diversification of transportation types is accelerating, the change in means of choice is also increasing. As the development paradigm in the low-growth era changes to urban regeneration, interest in idle railway sites is rising due to reduced demand for routes, improvement of alignment, and relocation of urban railways. Meanwhile, it is possible to partially achieve the solar power generation goal of 'Renewable Energy 3020' by utilizing already developed but idle railway sites and take advantage of being free from environmental damage and resident acceptance issues surrounding the location; but the actual use and plan for these solar power facilities are still lacking. Therefore, in this study, using the big data provided by the Korea National Railway and the Renewable Energy Cloud Platform, we develop an algorithm to discover and analyze suitable idle sites where solar power generation facilities can be installed and identify potentially applicable areas considering conditions desired by users. By searching and deriving these idle but relevant sites, it is intended to devise a plan to save enormous costs for facilities or expansion in the early stages of development. This study uses various cluster analyses to develop an optimal algorithm that can derive solar power plant locations on idle railway sites and, as a result, suggests 202 'actively recommended areas.' These results would help decision-makers make rational decisions from the viewpoint of simultaneously considering the economy and the environment.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

Inhibitory Effect of Potato Sprouting Inhibitor Chlorpropham on Dry Rot (감자 맹아억제제 Chlorpropham의 마른썩음병 억제 효과)

  • Kyusuk Han;Byung Sup Kim;Sae Jin Hong;Nam Sook Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.165-171
    • /
    • 2023
  • Potato dry rot is one of the potato storage diseases caused by Fusarium species and is a representative pathological disorder that induced post-harvest loss during storage. Chlorpropham treatment for sprouting inhibition is mainly used for room temperature storage of potatoes for processing. In this study, the inhibitory effect of chlorpropham on Fusarium-induced dry rot of potato 'Dano'. To investigate the mycelial growth rate of the dry rot fungus (Fusarium solani Appel & Wollenw), mycelial growth was investigated in a chlorpropham (5.0, 50.4, 503.8, and 5,038 ppm) and prochloraz (0.1, 1.0, 10.0, and 100.0 ppm) medium containing F. oxysporum mycelia. Mycelia were more inhibited as the concentration of chlorpropham and prochloraz increased during incubation at 20℃, and the inhibition rate was 98.2% and 100% when treated with 503.8 ppm of chlorpropham and 10ppm of prochloraz in 14 days, respectively. Potato Dano tubers inoculated with F. oxysporum were dipped in chlorpropham (5.0, 50.4, and 503.8 ppm) and prochloraz (100 ppm) to investigate the effect of preventing dry rot during cold storage at 20℃ and 4℃ in vivo. The disease diameter of potatoes stored at room temperature (about 20℃) was reduced to 13.0 mm in the prochloraz 100 ppm teatment, and 10.7 mm in the chlorpropham 50.4 ppm treatment compared to 13.7 mm in the control tuber at 70 days of storage. The disease progression in all treatments including control was similar with no statistically significant difference at 4℃ air temperature. From the results of this study, it is considered that treatment with 50.4 ppm of chlorpropham after harvest will be useful for suppressing dry rot of stored potatoes.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.