• Title/Summary/Keyword: 손상허용

Search Result 182, Processing Time 0.022 seconds

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station (CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로)

  • Kim, Min Gyu;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

Development and validation of analytical methods for pyrifluquinazon residues determination on agricultural commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 pyrifluquinazon 잔류시험법 개발 및 검증)

  • Do, Jung-Ah;Kwon, Ji-Eun;Kim, Mi-Ra;Lee, Eun-Mi;Kuk, Ju-Hee;Cho, Yoon-Jae;Chang, Moon-Ik;Kwon, Kisung;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.174-181
    • /
    • 2013
  • Pyrifluquinazon is classified with a quinazoline insecticide that regulates food intake by controling the feeding behavior acting on the endocrine or nervous system of pests such as aphids and white fly. To keep safety on pyrifluquinazon residues in agricultural commodities a simple, accurate and rapid analytical method was developed and validated using high performance liquid chromatograph (HPLC-UVD). The pyrifluquinazon residues acidified with 1% formic acid in samples were extracted with acetonitrile and partitioned with hexane subsequently to dichloromethane then purified with silica solid phase extraction (SPE) cartridge. The purified samples were detected using HPLC-UVD. The method was validated using apple and pear spiked with pyrifluquinazon at 0.02, 0.05 and 0.1 mg/kg and hulled rice, pepper, soybean at 0.05 and 0.1 mg/kg. Average recoveries were 70.5~107.9% with relative standard deviation less than 10%. The result of recoveries and overall coefficient of variation of a laboratory results in Gwangju regional FDA and Daejeon regional FDA was followed with Codex guideline (CODEX CAC/GL 40). This method is appropriated at pyrifluquinazon residues determination and will be used as official method of analysis.

A Field Test on Bearing Capacity Characteristics of Materials for Ground Cavity Restoration Based on Plate Bearing Test (평판재하시험을 이용한 공동 복구재료의 지지특성에 관한 현장실험)

  • Park, Jeong-Jun;Shin, Heesoo;Kim, Dongwook;You, Seung-Kyong;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.293-304
    • /
    • 2018
  • This paper described a results of field test based on plate bearing test of the restoration material, which was developed to restore the ground cavity due to sewerage damage. The analysis of bearing capacity characteristics on the restoration materials was performed by experimental results. The results showed that the load bearing capacity in the maximum stress condition of the foundation ground is about 66%-70%, when the expansion mat is embedded at the bottom of 0.1 m and 0.2 m from the ground surface. However, The load bearing capacity of expansion mat according to embedded depth was not large. The load bearing capacity of concrete mats was about 82%-90% compared with that of ground surface, and it showed about 50% of the load bearing capacity compared with the expansion mat. As a result of analysis of allowable bearing capacity according to restoration materials, it was confirmed that the allowable bearing capacity of the expansion mat and the concrete was about 130%-150% and about 160% more than the foundation ground, respectively.

Arthroscopic Cannulated Screw Fixation Technique for Avulsion Fracture of the Intercondylar Eminence of the Tibia (삽관 나사못(Cannulated screw)을 사용한 경골 과간 융기부 견열 골절의 관절경적 치료 기법)

  • Lee, Kee-Byoung;Chang, Ho-Guen;Lee, Seok-Beom;Moon, Young-Wan;Kang, Ki-Hoon;Lee, Wook-Hyung
    • Journal of the Korean Arthroscopy Society
    • /
    • v.3 no.2
    • /
    • pp.127-131
    • /
    • 1999
  • Avulsion fractures of the intercondylar eminence of the tibia are not uncommon. In the displaced avulsion fracture, anatomical reduction and firm fixation of fracture fragments are needed but the most of the conventional operative techniques including arthroscopic technique are relatively complex and need. The results were not always satisfactory due to the risk of postoperative complications such as wound infection, premature epiphyseal closure and loss of fixation after early motion etc. So we describe a simple and safe modified method of arthroscopic reduction and fixation for avulsion fractures of the intercondylar eminence of the tibia. In our thirteen cases, we achieved anatomical reduction and secure fixation using cannulated screw through the three arthroscopic portals (anterolateral, medial mid-patellar and central). Postoperatively, immediate limited range of motion of the knee and partial weight bearing were possible. Additional use of the washer afforded safe fixation of comminuted avulsion fracture. The advantage of this technique includes its technical simplicity, easy removal of hardware, ability to treat comminuted type IV fracture with washer, no additional skin incision, no damage to growing plate in growth children and less morbidity.

  • PDF

Study on Fatigue Behavior and Rehabilitation of Stringer with Coped Section(I) -Experimental Study on Static and Fatigue Behavior- (절취부를 갖는 세로보의 피로거동과 보수·보강에 관한 연구(I) -정적거동 및 피로거동의 실험적 고찰-)

  • Hwang, Yoon Koog;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.363-375
    • /
    • 1997
  • This study encompasses the performance of static and fatigue test for the 8 large scale test specimens to clarify the fatigue behavior of coped stringer and the effect of the repair and strengthening on the damaged stringer of the floor system in steel railway bridges. For the purpose of the research, the actual stress wave for the existing bridge was measured, the basic stress range frequency histogram was made and the equivalent stress range was calculated. Using the result from the equivalent stress range made by adjusting the stress range, the static and fatigue test was carried out by identifying the previous rehabilitation and after. As the result of the static tests, it was revealed that the level of local stress under the S1 specimen test of the real equivalent stress range was similar to tensile strength of the test material, and it was consistent with the requirement of the initiation condition of the fatigue crack. Through the various rehabilitation methods to the damaged specimens, the effects of the repair and reinforcement were analyzed. According to the results of the repair of effect, bolting the high tension bolt over the stop hole was confirmed to be more adequate method than drilling only stop hole to delay the fatigue crack growth. Futhermore, in case of the stringer subjected by bending moment, the reinforcement over the upper flange side was determined to be a useful strengthening method, and the reinforcement to the web of the stringer was not appropriate to accomodate as a adequate strengthening method. Also it was confirmed that the category of the fatigue design for the coped stringer met with the category E specified on the fatigue design criteria of the Highway Standard Specification in Korea.

  • PDF

Experimental evaluation of fire protection measures for the segment joint of an immersed tunnel (침매터널 세그먼트조인트의 내화 대책에 대한 실험적 평가)

  • Choi, Soon-Wook;Chang, Soo-Ho;Kim, Heung-Youl;Jo, Bong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.177-197
    • /
    • 2011
  • In this study, a series of fire experiments under $HC_{inc}$ and ISO834 (duration of 4 hour) fire scenarios were carried out for three different types of fire protection measures for the segment joint to evaluate their applicabilities to an immersed tunnel. The experimental results revealed that an expansion joint installed to allow relative movements between concrete element ends in an segment joint is the most vulnerable to a severe fire. For the fire protection measure where the originally designed steel plates at an expansion joint arc replaced by fire-resistant boards, the experiments showed that they cannot achieve good fireproofing performance under both $HC_{inc}$ fire scenario and ISO834 (4 hour) fire scenarios since the installation of fire-resistant boards results in the reduction of the sprayed fire insulation thickness. On the other hand, the application of modified bent steel plates replacing the original steel plates was proved to be very successful in fireproofing of the expansion joint due to more sprayed materials filled in bent steel plate than in the original design concept as well as higher adhesion between the steel plate and the sprayed fire insulation layer.

Evaluation of Structural Response of Cylindrical Structures Based on 2D Wave-Tank Test Due to Wave Impact (파랑충격력에 의한 원형실린더구조물의 구조응답평가)

  • Lee, Kangsu;Ha, Yoon-Jin;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Sa Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The wave-impact load on offshore structures can be divided into green-water and wave-slamming impact loads. These wave impact loads are known to have strong nonlinear characteristics. Although the wave impact loads are dealt with in the current classification rules in the shipping industry, their strong nonlinear characteristics are not considered in detail. Therefore, to investigate these characteristics, wave-impact loads induced by a breaking wave on a circular cylinder were analyzed. A model test was carried out to measure the wave-impact loads due to breaking waves in a two-dimensional (2D) wave tank. To generate a breaking wave, the focusing wave method was applied. A series of 2D tank tests under a horizontal wave impact was carried out to investigate the structural responses of the cylindrical structure, which were obtained from the measured model test data. According to the results, we proposed a structural damage-estimation procedure of an offshore tubular member due to a wave impact load. Furthermore, a recommended wave-impact load is suggested that considers the minimum required thickness of each member. From the experimental results, we found that the required minimum thickness is dependent on the impact pressure located in a three-dimensional space on the surface of a tubular member.

A Study on the Safety Evaluation of the Landing Pier Structure Using FBG Sensor (FBG 센서를 이용한 잔교식 안벽 구조물의 안전성 평가에 대한 연구)

  • Lee, Heung-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.44-50
    • /
    • 2019
  • The underwater structures of landing pier are not easy to access and it is difficult to check the damage. Lately, typhoons and earthquakes have occurred frequently, which may cause damage to underwater structures of landing pier. In this study, to prevent collapse of underwater structures and to maintain systematically, the application method of FBG sensors and safety evaluation methods were studied. In order to confirm the application of the FBG sensor to the circular steel pipe used as a pile on the landing pier, we conducted laboratory tests and confirmed that the FBG sensor should be applied by welding. As a result of structural analysis of the landing pier structure, the optimal position of FBG sensor confirmed. The stresses on the dead load were calculated by structural analysis, the stresses on the live load were calculated by using the data obtained from the FBG sensor, and then the stress acting on the pile was calculated by adding the two stresses. The calculated stress was compared with the allowable stress to evaluate the safety of the pile. This study was carried out as a basic study to find a way to evaluate the safety of the landing pier in real time.

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.