Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.90-92
/
2000
데이터마이닝 문제는 데이터를 그 속성들에 따라 분류하여 예측하는 것뿐만 아니라 분류된 속성들간의 연관성에 대해 잘 설명할 수 있어야 한다. 일반적으로 변수들간의 연관성을 잘 설명할 수 있으면서도 높은 예측력을 가지는 방법으로는 베이지안 네트웍 분류자(Bayesian network classifier)가 있다. 그러나 이것은 데이터 마이닝과 같은 대용량 데이터에서는 성능이 떨어지는 단점이 있다. 이에 이 논문에서는 최근 RBF 신경망이 입력변수 선정문제에 성공적으로 적용된 Reversible Jump Markov Chain Monte Carlo 방법을 이용하여 최적의 입력변수들만을 선택하여 베이지안 네트웍을 학습하는 Selective BN Augmented Naive-Bayes Classifier를 새로운 방안으로 제안하고 이를 실제 데이터마이닝 문제에 적용한 결과를 제시한다.
IoT의 주요 구성요소는 기존의 데스크 탑 외에 디바이스 즉, 단말 기기들이 주류를 이룬다. 이러한 IoT 디바이스들은 데이터의 유형이나 접근 방법이 다양하고, 실시간적 데이터 생산과 제어를 위한 양방향 데이터 접근 지원을 필요로 한다. 이러한 IoT 디바이스를 연결하여 클라우드 형 서비스로 개발하기 위해서는 디바이스 속성 관리가 용이한 도메인 관리 방법과 디바이스에 대한 일관된 접근 인터페이스를 제공하는 플랫폼이 필요하다. 이 논문에서는 리눅스 파일시스템 후면 즉, 사용자 영역에 리눅스 파일 시스템 스타일의 DB 기반 가상 파일시스템을 구축하여 IoT 디바이스를 연결하고 관리하는 프레임워크를 제시한다. 구현 가상 파일시스템은 계층적 디렉터리 체계를 DB에 유지하면서 단말 노드에는 지리적으로 산재한 IoT 디바이스들에 대한 속성 정보를 관리한다. 디렉터리 및 IoT 디바이스의 추가 삭제 검색 등 도메인 관리는 mkdir. mknod, ls, find 등 리눅스 고유 명령어로 이루어지고, 모든 IoT 디바이스에 대한 접근은 open(), read(), write(), close() 등 POSIX 인터페이스를 통해 가능하다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.178-181
/
2019
포인트 클라우드 콘텐츠는 3D 포인트 집합으로 이루어진 3D 데이터로, 일반적으로 3D 포인트 클라우드는 하나의 객체를 표현하기 위하여 수십, 수백만 개의 3차원 포인트(Point) 데이터가 필요하며, 각 포인트 데이터는 3차원 좌표계의 (x, y, z)좌표와 포인트의 색(color), 반사율(reflectance), 법선벡터(normal) 등과 같은 속성(attribute)으로 구성되어 있다. 따라서 기존 2D영상보다 한 단계 높은 차원과 다양한 속성으로 구성된 포인트 클라우드를 사용자에게 제공하기 위해서는 고효율의 인코딩/디코딩 기술 연구가 필요하며, 다양한 대역폭, 장치 및 관심 영역에 따라 차별화된 서비스를 제공하기 위한 품질 확장성 기능의 개발이 요구된다. 이에 본 논문에서는 포인트 클라우드 압축에 사용되는 V-PCC에서 3차원 미디어인 포인트 클라우드의 3D 공간 내 포인트 간의 밀도를 변경하여, 새로운 품질 변화를 달성하고 비트전송률 변경을 추가 지원하는 방법을 제시하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.246-249
/
2021
기존의 이미지 분리 및 합성 과정은 전문 프로그램의 도움을 받아 이미지로부터 사물이나 환경을 분리하거나 합성하여 이루어져 왔으며 생산되는 이미지의 양에서 일반 사용자가 생성하는 이미지의 비중이 높음에도 상대적으로 적은 수의 인원만이 기존 이미지를 분리하고 합성할 수 있었다. 본 논문에서는 다량의 기존 이미지 내 요소를 손쉽게 분리, 합성하여 새로운 컨텐츠를 제작할 수 있도록 하는 메타데이터 구조와 이를 활용하여 이미지 합성에 대한 사용자 편의성을 높이는 플랫폼을 제안한다. 이는 object segmentation 을 기반으로 이미지의 각 요소를 분리하고 계층화 하여 이루어지며 이미지 합성에 대한 접근성을 높이고 분리된 이미지의 속성을 메타데이터로 함께 표기하여 다량의 기존 이미지에서 필요로 하는 이미지 요소를 빠르게 찾을 수 있도록 한다. 또한 분리된 이미지 요소의 속성을 구체화하기 위해 사용할 수 있는 방법들에 대해 논의한다. 결과적으로 위 제안은 기존 이미지 요소를 분리, 합성하기 위해 필요한 장벽을 낮추는 역할을 수행하여 더 많은 사용자들이 이미지 합성에 참여할 수 있게 할 것으로 기대된다.
Seo, Young-Min;Kim, Sung-Bum;Jang, Kwang-Jin;Jee, Hong-Kee;Lee, Soon-Tak
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.1112-1115
/
2006
모바일 GIS를 홍수재해관리 시스템에 도입하기 위한 목적은 홍수에 대비한 신속한 상황대처 통해 인명 및 재산피해를 최소화하는데 있다. 모바일 GIS 시스템 구축의 기본 방향은 하천유역에 대한 행정업무 및 정보화 업무의 효율성을 높여 현장업무에서 실시간으로 제공되는 수문정보 및 지형정보에 대한 다양한 컨텐츠를 주민들이 쉽게 접근하여 서비스를 제공받을 수 있도록 하고 현장 실무자가 하천 수위 및 유량을 관리하는 데 있어 즉각적인 조치를 가능하도록 하기 위한 것이다. 본 연구에서 이동 클라이언트와 홍수재해관리시스템 서버간의 무선통신채널은 AP(Access Point)를 통한 WLAN이나 CDMA망의 모바일 네트워크 또는 차세대 휴대인터넷 망을 대상으로 하였다. 홍수재해관리시스템은 ArcIMS, HTML, Java Script를 이용하여 구축하고 웹 서비스를 위해 마이크로소프트사의 IIS(Internet Information System) 사용하며, ArcIMS의 정상적인 구동을 위해 JRE(Java Runtime Environment)를 설치하도록 하였다. 주요 GIS 기능은 줌인, 줌아웃, 팬, 속성정보 검색, 거리측정, 버퍼링 기능 등이고 Layer는 침수위험건물, 대피건물, 침수지역 건물용도, 건물, 도로, 수계, 침수예상지역(100, 200년 빈도), 위성영상, DEM, 행정경계 등이 포함되도록 하였다. 시스템 구축에 사용될 데이터는 수리수문학적 데이터(유출량, 강우강도, 대상지역의 면적, Manning 계수 등)와 대상지역의 수치지도, DEM, 고해상 위성영상, 문헌조사와 현장조사를 통해 얻은 자료를 바탕으로 구성하도록 하였으며, 수리수문학적 데이터와 DEM 데이터를 바탕으로 침수지역 데이터를 생성하고 문헌조사와 현장조사를 통해 얻은 속성정보와 디지털 지도인 공간정보를 연결하기 위해 디지털 지도에서 건물 Layer, 도로 Layer, 등고선 Layer, 수계 Layer를 추출하여 ArcGIS에서 Coverage로 변환하여 위상관계를 설정한 후 다시 Shape 파일로 변환하여 속성정보와 연결시키도록 데이터베이스 구축방안을 제시하였다. 이와 같이 본 연구에서는 홍수재해 관리시스템에서 모바일 GIS를 적용하기 위하여 Pocket PC를 탑재한 이동 클라이언트인 PDA에 GPS 모듈을 확장하여 GPS 위성으로부터 위치정보를 획득하고 지리정보를 제공하는 모바일 GIS 서버간에 XML 기술을 이용하여 수문정보 및 지형정보 서비스를 제공하는 방안을 제시하였다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.4
/
pp.795-805
/
2019
Recently, there is a growing interest in network anomaly detection technology to tackle unknown attacks. For this purpose, diverse studies using data mining, machine learning, and deep learning have been applied to detect network anomalies. In this paper, we evaluate the decision tree to see its feasibility for network anomaly detection on NSL-KDD data set, which is one of the most popular data mining techniques for classification. In order to handle the over-fitting problem of decision tree, we select 13 features from the original 41 features of the data set using chi-square test, and then model the decision tree using TensorFlow and Scik-Learn, yielding 84% and 70% of binary classification accuracies on the KDDTest+ and KDDTest-21 of NSL-KDD test data set. This result shows 3% and 6% improvements compared to the previous 81% and 64% of binary classification accuracies by decision tree technologies, respectively.
The Journal of the Convergence on Culture Technology
/
v.6
no.3
/
pp.275-282
/
2020
Social interest on high-quality specialty coffee is increased due to customers' growing experience upon coffee and recent change of coffee culture, which is taking one step further from putting emphasis on not just price and quality but also psychological satisfaction. As a culture of drinking coffee and giving much value on its taste and flavor, a number of customers increasingly demand coffee which is probable to suit one's taste. Likewise, the number of specialty coffee shops is increasing with growing qualities of their coffee. Therefore, the purpose of this study is to analyze the main attributes of specialty coffee and to build a marketing system for specialty coffee shops. The text mining on domestic web portal sites by online big-data analysis is used to extract components of properties of specialty coffee and analyze the degree of how the elements affect the properties. According to the result of the study, words related to coffee taste, coffee beans and baristas were found to play a central role in the properties of specialty coffee.
To discover association rules from nontransactional data, there have been many studies on discretization of attribute values. These studies do not reflect the change of discovered rules' confidence according to the change of the ranges of the discretized attributes, and perform the discretization stage and the rule discovery stage independently. This causes the ranges of attributes not properly discretized, thereby making the rules having high confidence excluded in the result set. To solve this problem, we propose a novel method that performs the discretization and rule discovery stages simultaneously in order to discretize ranges of attributes in such a way that the rules having high confidence are discovered well. To the end, we perform hierarchical clustering on the attributes in the right hand side of rules, then do characterization on every cluster thus obtained. The experimental result demonstrates that our method discovers the rules having high confidence better than existing methods.
Journal of the Korea Institute of Information Security & Cryptology
/
v.22
no.4
/
pp.785-796
/
2012
In this paper, we propose an effective Behavior-based detection technique using the frequency of system calls to detect malicious code, when the number of training data is fewer than the number of properties on system calls. In this study, we collect the Native APIs which are Windows kernel data generated by running program code. Then we adopt the normalized freqeuncy of Native APIs as the basic properties. In addition, the basic properties are transformed to new properties by GLDA(Generalized Linear Discriminant Analysis) that is an effective method to discriminate between malicious code and normal code, although the number of training data is fewer than the number of properties. To detect the malicious code, kNN(k-Nearest Neighbor) classification, one of the bayesian classification technique, was used in this paper. We compared the proposed detection method with the other methods on collected Native APIs to verify efficiency of proposed method. It is presented that proposed detection method has a lower false positive rate than other methods on the threshold value when detection rate is 100%.
Journal of Korea Society of Industrial Information Systems
/
v.27
no.6
/
pp.115-126
/
2022
The purpose of this study is to try to IPA(Importance-Performance Analysis) by applying text mining approaches to user review data for korea mobile banking applications, and to derive priorities for improvement. User review data on mobile banking applications of korea commercial banks (Kookmin Bank, Shinhan Bank, Woori Bank, Hana Bank), local banks (Gyeongnam Bank, Busan Bank), and Internet banks (Kakao Bank, K-Bank, Toss) that gained from Google playstore were used. And LDA topic modeling, frequency analysis, and sentiment analysis were used to derive key attributes and measure the importance and satisfaction of each attribute. Result, although 'Authorizing service', 'Improvement of Function', 'Login', 'Speed/Connectivity', 'System/Update' and 'Banking Service' are relatively important attributes when users use mobile banking applications, their satisfaction is not at the average level, indicating that improvement is urgent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.