• Title/Summary/Keyword: 속성기반분류

Search Result 346, Processing Time 0.027 seconds

Genetic Algorithm Based Attribute Value Taxonomy Generation for Learning Classifiers with Missing Data (유전자 알고리즘 기반의 불완전 데이터 학습을 위한 속성값계층구조의 생성)

  • Joo Jin-U;Yang Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.133-138
    • /
    • 2006
  • Learning with Attribute Value Taxonomies (AVT) has shown that it is possible to construct accurate, compact and robust classifiers from a partially missing dataset (dataset that contains attribute values specified with different level of precision). Yet, in many cases AVTs are generated from experts or people with specialized knowledge in their domain. Unfortunately these user-provided AVTs can be time-consuming to construct and misguided during the AVT building process. Moreover experts are occasionally unavailable to provide an AVT for a particular domain. Against these backgrounds, this paper introduces an AVT generating method called GA-AVT-Learner, which finds a near optimal AVT with a given training dataset using a genetic algorithm. This paper conducted experiments generating AVTs through GA-AVT-Learner with a variety of real world datasets. We compared these AVTs with other types of AVTs such as HAC-AVTs and user-provided AVTs. Through the experiments we have proved that GA-AVT-Learner provides AVTs that yield more accurate and compact classifiers and improve performance in learning missing data.

Pattern classification on the basis of unnecessary attributes reduction in fuzzy rule-based systems (퍼지규칙 기반 시스템에서 불필요한 속성 감축에 의한 패턴분류)

  • Son, Chang-Sik;Kim, Doo-Ywan
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.109-118
    • /
    • 2007
  • This paper proposed a method that can be simply analyzed instead of the basic general Fuzzy rule that its insufficient characters are cut out. Based on the proposed method. Rough sets are used to eliminate the incomplete attributes included in the rule and also for a classification more precise; the agreement of the membership function's output extracted the maximum attributes. Besides, the proposed method in the simulation shows that in order to verify the validity, compare the max-product result of fuzzy before and after reducing rule hosed on the rice taste data; then, we can see that both the max-product result of fuzzy before and after reducing rule are exactly the same; for a verification more objective, we compared the defuzzificated real number section.

  • PDF

Towards the Development of a Reading Material Classification Scheme Based on a Combination of Book Use Facets (도서이용 속성 조합에 기반한 독서자료 분류체계 설계)

  • Jiyoung, Shim
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.4
    • /
    • pp.347-373
    • /
    • 2022
  • In this study, in order to expand the access points of reading materials, a reading material classification (RMC) system based on the facets of book use was devised. The facets of books that can be considered by book users in the reading situation were content-analyzed. Also, through network analysis, subject headings adjacent to one subject heading were grouped into related subject headings. The RMC developed in this study can be used as a tool that provides various access points to help book users search in the library OPAC and other reading information systems.

A Case-Specific Feature Weighting Method in Case-Based Reasoning (사례기반 추론에서 사례별 속성 가중치 부여 방법)

  • 이재식;전용준
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.391-398
    • /
    • 1999
  • 사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.

  • PDF

Deep learning-based clothing attribute classification using fashion image data (패션 이미지 데이터를 활용한 딥러닝 기반의 의류속성 분류)

  • Hye Seon Jeong;So Young Lee;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • Attributes such as material, color, and fit in fashion images are important factors for consumers to purchase clothing. However, the process of classifying clothing attributes requires a large amount of manpower and is inconsistent because it relies on the subjective judgment of human operators. To alleviate this problem, there is a need for research that utilizes artificial intelligence to classify clothing attributes in fashion images. Previous studies have mainly focused on classifying clothing attributes for either tops or bottoms, so there is a limitation that the attributes of both tops and bottoms cannot be identified simultaneously in the case of full-body fashion images. In this study, we propose a deep learning model that can distinguish between tops and bottoms in fashion images and classify the category of each item and the attributes of the clothing material. The deep learning models ResNet and EfficientNet were used in this study, and the dataset used for training was 1,002,718 fashion images and 125 labels including clothing categories and material properties. Based on the weighted F1-Score, ResNet is 0.800 and EfficientNet is 0.781, with ResNet showing better performance.

Sketch query method for medical image retrieval based on disease icon (의료 영상 검색을 위한 아이콘 기반의 스케치 질의 작성 방안)

  • 이낙훈;엄기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.122-124
    • /
    • 2000
  • 본 논문은 질병이 있는 뇌종양 MRI 이미지 검색을 위해 아이콘 기반의 스케치 질의 방안을 제시한다. 기존의 이미지 검색 시스템은 이미지가 갖는 속성 중 일부의 속성 값만을 가지고 사용자가 직접 질의 이미지를 작성한다. 그러나 이런 방법으로는 여러 복잡한 속성값을 갖는 뇌종양 MRI 이미지의 내용을 표현하기는 어렵다. 그래서 본 논문에서는 질병이 있는 뇌 MRI 이미지 검색을 위해 아이콘을 사용한 템플릿 형식의 메디컬 스케치 질의 방법을 제시한다. 뇌에서 발생하는 뇌질환을 질병별로 분류하였고, 분류된 질병들이 가지고 있는 색상이나 질감, 모양과 같은 속성 값들을 아이콘화하여 템플릿 이미지로 제공되는 정상인의 이미지에 정의된 질병 아이콘의 크기와 위치를 설정함으로써 사용자가 검색하고자 하는 질의 이미지를 쉽게 작성할 수 있는 스케치 형식의 질의방법을 제안한다.

  • PDF

Preference Analysis for Location Based Constructs on Smartphone Environment (스마트폰 환경에서 위치기반 속성에 대한 선호도 분석)

  • Nam, Soo-tai;Kim, Do-Goan;Jin, Chan-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.171-174
    • /
    • 2014
  • Increasingly important user based service on the smart media era, and increasing awareness about the user experience. In this study, by considering these realities, what impact location based constructs on smartphone environment, continuous intention to use you want to identification. Thus, this study conducted of preference the influencing factors for location based constructs. First steps, based constructs known empirical studies were categorized information, entertainment, safe&emergency, navigation&tracking and advertising& commerce. Second Steps, the categorized factors were analyzed preference relationship between constructs using AHP(analytic hierarchy process) technique. Questionnaire survey was conducted to those who employees S Telecom in Busan city and Gyeongnam province during 2000. 4. 15 and 2014. 4. 30. The result of the analysis might be summarized that the navigation(0.133) has the highest preference ran in the constructs. Based on these findings, several theoretical and practical implications were suggested and discussed.

  • PDF

A Study on Survey and Analysis for the Standardization to Information Attribute of Construction Material (건설자재 정보속성 정형화를 위한 조사 ${\cdot}$ 분석적 연구)

  • Han, Choong-Han;Ju, Ki-Bum;Kim, Hyung-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.768-773
    • /
    • 2007
  • Standardization to information attribute of construction material is continuous demanded through the life cycle of a construction project, and the productivity elevation is derived of contribution effect in construction market. This study surveyed the means of acquisition and attribute of information to a staff in purchase, which are effected on the revitalization of information circulation to the construction material Proposed the standardization to information attribute of construction material that is based on improvement and application to the information attribute. And information attribute is classified with construction process through analysis on test list of quality certification. This study also suggested representative attribute of quality information, for the elevation of safety and quality in construction industry. Therefore, logicality of common information is based by analysis of mathematical statistics, systemicity of quality information is applied by MasterFormat(2004)

  • PDF

Classification of emotion data using rough set on fuzzy inference (퍼지추론에서 러프집합을 이용한 감성 데이터의 분류)

  • 손창식;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.145-148
    • /
    • 2004
  • 규칙 기반 추론 시스템에서 규칙의 속성 감축은 다양한 방법으로 제안되어 왔다. 규칙의 속성 감축은 퍼지 추론 시스템을 구현하는데 있어서 처리 시간을 단축시킬 수 있으나 규칙의 종속성 및 상관성을 고려하지 않을 경우 예상하지 못한 추론 결과를 얻을 수 있다. 따라서, 본 논문에서는 복합속성을 가진 규칙의 속성 감축과 상관성을 고려하기 위하여 러프집합의 특성 중 식별가능 행렬과 식별가능 함수를 이용하였다. 그리고 속성 감축에 사용된 규칙은 복합속성(composite attribute)을 가지는 감성 데이터를 이용하였다.

  • PDF

User and Item based Collaborative Filtering Using Classification Property Naive Bayesian (분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링)

  • Kim, Jong-Hun;Kim, Yong-Jip;Rim, Kee-Wook;Lee, Jung-Hyun;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.23-33
    • /
    • 2007
  • The collaborative filtering has used the nearest neighborhood method based on the preference and the similarity using the Pearson correlation coefficient. Therefore, it does not reflect content of the items and has the problems of the sparsity and scalability as well. the item-based collaborative filtering has been practically used to improve these defects, but it still does not reflect attributes of the item. In this paper, we propose the user and item based collaborative filtering using the classification property and Naive Bayesian to supplement the defects in the existing recommendation system. The proposed method complexity refers to the item similarity based on explicit data and the user similarity based on implicit data for handing the sparse problem. It applies to the Naive Bayesian to the result of reference. Also, it can enhance the accuracy as computation of the item similarity reflects on the correlative rank among the classification property to reflect attributes.