The Journal of the Korea Contents Association (한국콘텐츠학회논문지)
- Volume 7 Issue 11
- /
- Pages.23-33
- /
- 2007
- /
- 1598-4877(pISSN)
- /
- 2508-6723(eISSN)
DOI QR Code
User and Item based Collaborative Filtering Using Classification Property Naive Bayesian
분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링
- Kim, Jong-Hun ;
- Kim, Yong-Jip (ACCESS SEOUL Co, LTD) ;
- Rim, Kee-Wook ;
- Lee, Jung-Hyun ;
- Chung, Kyung-Yong
- Published : 2007.11.30
Abstract
The collaborative filtering has used the nearest neighborhood method based on the preference and the similarity using the Pearson correlation coefficient. Therefore, it does not reflect content of the items and has the problems of the sparsity and scalability as well. the item-based collaborative filtering has been practically used to improve these defects, but it still does not reflect attributes of the item. In this paper, we propose the user and item based collaborative filtering using the classification property and Naive Bayesian to supplement the defects in the existing recommendation system. The proposed method complexity refers to the item similarity based on explicit data and the user similarity based on implicit data for handing the sparse problem. It applies to the Naive Bayesian to the result of reference. Also, it can enhance the accuracy as computation of the item similarity reflects on the correlative rank among the classification property to reflect attributes.
협력적 필터링은 피어슨 상관 계수에 의해 유사도를 구하고, 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 및 확장성의 문제를 가지고 있다. 이러한 문제점을 개선하기 위하여 아이템 기반 협력적 필터링이 실용화되었으나 아이템의 속성을 반영하지는 못한다. 본 논문에서는 기존 추천 시스템의 문제점을 보완하기 위하여 분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링을 제안하였다. 제안한 방법에서는 희박성 문제를 해결하기 위하여 명시적 데이터에 기반한 아이템 유사도와 묵시적 데이터에 기반한 사용자 유사도를 복합적으로 참조한다. 참조 결과에 대해 Naive Bayesian을 적용한다. 또한 속성을 반영하기 위해 아이템 분류속성간의 유사관계 순위를 아이템 유사도 계산에 반영함으로써 정확성을 높일 수 있었다.