• Title/Summary/Keyword: 소형연료전지

Search Result 152, Processing Time 0.023 seconds

The Study of Maximum Power Point Tracking Controller for the Wind Power Generator (풍력발전기용 최대전력점 추종제어기에 관한 연구)

  • Kang, Ju-Sung;Koh, Kang-Hoon;Han, Ho-Dong;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.155-157
    • /
    • 2006
  • 현재 화석연료에만 의존하는 에너지 시장을 변화시키고자 하는 연구가 활발히 이루어지고 있는 가운데 신재생에너지(연료전지, 풍력, 태양광 등)를 복합적으로 활용한 분산전원시스템에 관한 관심이 증가하고 있다. 이 가운데 풍력 발전시스템은 발전효율, 가격측면 등에 있어 많이 연구되고 있다. 그러나 풍력발전시스템의 경우 난류가 되기 쉽고, 풍향이나 풍속이 수십초의 간격으로 변화하기 때문에, 바람의 에너지를 최대한 이용하는 최대전력점추종(MPPT)제어기의 역할이 가장 중요하다. 본 논문에서는 소형풍력발전기를 활용하여 풍속, 풍차 회전속도, 전력 등의 정보를 이용한 기존 방식에 비하여 아주 간단한 제어기법을 구현하고자 한다.

  • PDF

Study of fuel cell CHP-technology on electricity generation sector using LEAP-model (LEAP 모형을 이용한 연료전지 열병합발전설비 도입에 따른 온실가스배출저감 잠재량 분석)

  • Shin, Seung-Bok;Jun, Soo-Young;Song, Ho-Jun;Park, Jong-Jin;Maken, Sanjeev;Park, Jin-Won
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.230-238
    • /
    • 2009
  • We study about small gas engine and fuel cell CHP (Combined Heat and Power) as the technologies for energy conservation and $CO_2$ emissions reduction. Korea government plans to use them in near future. This study quantitatively analyzed energy consumption and $CO_2$ emissions reduction potential of small CHP instead of existing electric power plant (coal steam, combined cycle and oil steam) using LEAP (Long-range Energy Alternative Planning system) as energy-economic model. Three future scenarios are discussed. In every scenario similar condition for each CHP is used. Alternative scenario I: about 6.34% reduction in $CO_2$ emissions is observed in 2019 due to increase in amount of gas engine CHP and fuel cell CHP while coal use in thermoelectric power plant is almost stagnant. In alternative scenario II: a small 0.8% increase in $CO_2$ emission is observed in 2019 keeping conditions similar to alternative scenario I but using natural gas in combined cycle power plant instead of coal. During alternative scenario II overall $CO_2$ emission reduction is observed in 2019 due to added heat production from CHP. Alternative scenario III: about 0.8% reduction in $CO_2$ emissions is observed in 2019 using similar CHP as AS I and AS II. Here coal and oil are used in thermoelectric power plant but the quantity of oil and coal is almost constant for next decade.

Characterization of Passive Direct Methanol Fuel Cells (수동형 직접 메탄올 연료전지의 특성 연구)

  • Kho, B.K.;Kim, Y.J.;Oh, I.H.;Hong, S.A.;Ha, H.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • In this study investigations have been carried out for the evaluation of small DMFCS under passive operation conditions for use in portable powers. Under passive conditions, a maximum performance was obtained at a methanol concentration of 4 M and at a catalyst loading of $8mg/cm^2$ on both electrodes. By optimizing various parameters, we could achieve the highest performance of $55mW/cm^2$ at 1 attn and at R.T.A monopolar stack consisting of 6 unit cells with active area of $4.5cm^2/cell$ was prepared and it showed a uniform voltage distribution all over the cells and it had a power output of 1 watt and a power density of $37mW/cm^2$ A monopolar stack which consisted of 16 cells and produced a 2.4W power was also fabricated and was tested for operation of a miniature car.

Durability Evaluation of Air-Cooled Proton Exchange Membrane Fuel Cells Stacks by Repeated Start-Up/Shut-Down (시동/정지반복에 의한 공랭식 고분자연료전지 스택 내구성 평가)

  • YOO, DONGGEUN;KIM, HYEONSUCK;OH, SOHYEONG;PARK, KWON-PIL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • The air-cooled proton exchange membrane fuel cells (PEMFC) stacks, which is widely used in small-sized PEMFC, have a problem in that durability is weaker than that of the water-cooled type. Because the cathode is open to the atmosphere and the structural problem of the air-cooled stack, which is difficult to maintain airtightness, is highly likely to form a hydrogen/air boundary during start-up/shut-down (SU/SD). Through the accelerated durability evaluation of the 20 W air-cooled PEMFC stack, the purpose of this study was to find out the cause of the degradation of the stack and to contribute to the improvement of the durability of the air-cooled PEMFC stack. In this study, it was possible to evaluate durability in a relatively short time by reducing 20-30% of initial performance by repeating SU/SD 1,000 to 1,200 times on an air-cooled PEMFC stack. After disassembling the stack, each cell was divided into two and the performance analysis showed that the electrode degradation was more severe in the anode outlet membrane electrode assembly (MEA), which facilitates air inflow as a whole, than in the inlet MEA. It was shown that the cathode Pt was dissolved/precipitated to deteriorate the polymer ionomer inside the membrane.

기획특집 - 미래형 도시, 꿈꾸는 탄소 제로도시 개발

  • 환경보전협회
    • Bulletin of Korea Environmental Preservation Association
    • /
    • s.389
    • /
    • pp.8-24
    • /
    • 2010
  • 도시생활과 관련된 교통 주택부문의 온실가스 배출량은 43%를 차지하고 있어 도시에서의 온실가스 저감대책 마련이 시급하며, 저탄소 녹색성장의 시대적 요구에 따라 기후변화 위기에 적극적으로 대응할 수 있는 저탄소 녹색도시 조성이 필요한 실정이다. '저탄소 녹색도시'는 지구온난화 등 기후변화의 주요 원인인 이산화탄소의 배출을 획기적으로 감축하고, 지속가능한 도시기능을 확충하면서 자연과 공생하는 도시를 말한다. 최근의 '저탄소 녹색도시'는 기존의 녹색도시와 또 다른 양상을 보이고 있다. 자원순환과 신재생에너지원의 도입을 주장하고, 탄소상쇄를 위한 에너지 및 자원절감 전략을 중요시 하고 있다. 선진국에서는 이미 주거단지내 소비되는 난방과 전력은 단지내에서 생산되는 신재생에너지를 활용하고 있으며, 모든 주택의 지붕위에 태양광 패널을 설치하고 단지 내 열병합 자가발전소에서 산업폐기물을 소각하여 에너지를 생산함으로써 제로 에너지(Zero Energy)를 실현하고 있다. 선진국 뿐 아니라 전 세계의 이목이 '저탄소 녹색도시'에 집중되고 있으며 저탄소 녹색도시를 조성해야 하는 것은 선택이 아닌 의무가 되고 있다. 우리나라도 2020년 그린홈 100만호 보급을 목표로 주택분야 보급가능 신재생 에너지원을 태양열, 지열, 소형풍력, 연료전지 등으로 다양화하여 안정적 보급 기반을 확보해 가고 있다. 녹색도시를 조성하기 위해서는 저탄소 주택, 저탄소 에너지, 녹색교통, 생태녹지, 물 및 자원순환등 핵심요소들의 적용방안이 검토되어져야 한다. 이에 본지에서는 "저탄소 녹색도시의 해외사례와 국내 적용방향", "그린홈 100만호 보급사업 그간 성과와 발전방향", "온라인 전지자동차의 기술 개발 동향" 내용에 대하여 살펴보고자 한다.

  • PDF

Durability Evaluation of Cathode Open-type Proton Exchange Membrane Fuel Cells Stacks (Cathode 개방형 고분자연료전지 스택 내구성 평가)

  • Yoo, Donggeun;Kim, Hyeonsuck;Oh, Sohyeong;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Cathode open-type PEMFC (Proton Exchange Membrane Fuel Cells) stacks, which are widely used in small transport-type PEMFC, have a problem with poor durability. Through the accelerated durability test of the 13-cell PEMFC stack, we tried to find the cause of the degradation of the stack and to contribute to the improvement of the durability of the cathode open stack. A hydrogen/air boundary is formed during start-up/shut-down (SU/SD) due to the structural problem of the cathode open stack in which the cathode is open to the atmosphere and it is difficult to maintain airtightness, thereby deteriorating the cathode. In this study, it was possible to evaluate the durability in a relatively short time by reducing the 54% of the initial performance by repeating SU/SD 1,800 times on the cathode open stack. After dismantling the stack, each cell was divided into two and the performance was analyzed. Overall, the anode outlet MEA, which facilitates air inflow, showed more severe electrode deterioration than the inlet MEA, confirming that the hydrogen/air boundary formation during SU/SD is the main cause of degradation.

Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications (소형로봇용 500W급 연료전지 스택무게 최적화 설계)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

High Purity Hydrogen Generator for Fuel Cell Vehicles (연료전지 자동차 탑재형 고순도 수소생산장치)

  • Han, Jaesung;Lee, Seok-Min
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2001
  • We developed a compact, 10 kWe, purifier-integrated reformer which supplies hydrogen for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by palladium alloy membrane and catalytic combustion by noble metal coated wire-mesh catalyst were combined with the conventional methanol steam reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems. In this system, steam reforming, hydrogen purification, and catalytic combustion take place all in a single reactor so that the whole system is compact and easy to operate. The module produces $8.2Nm^3/hr$ of 99.999% or higher purity hydrogen with CO impurity less than 10 ppm, which is equivalent to 10 kWe when PEMFC has 45 % efficiency. Thermal efficiency of the module is 81 % and the power density of the module is 1.6 L/kWe. As the results of experiments, cold-start time has been measured about 20 minutes. Response time of hydrogen production to the change of the feed rate has been within 1 minutes.

  • PDF

Optimization of a Fuel Cell Stack for Small Robot Systems (소형 로봇용 연료 전지 스택 설계 사양 최적화)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.211-216
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

  • PDF

Comparison of Characteristics and Performance of Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지 고분자막의 특성 및 성능 비교)

  • Lee, Daewoong;Lim, Daehyun;Oh, Sohyeong;Chung, Hoi-Bum;Yoo, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.171-175
    • /
    • 2020
  • In the proton exchange membrane fuel cells (PEMFC), the development of a reinforced membrane with improved durability by a support is actively in progress in Korea. In this study, the initial performance and characteristics of four types of reinforced membranes were compared. Reinforced membranes with higher amounts of C-F chains in the polymer membrane showed lower water diffusion coefficients due to the hydrophobicity of the C-F chains. The thicker the polymer membrane, the more the hydrogen permeability decreased and the higher the OCV. Membrane with short resistance below 1.5 Ωcm2 showed OCV below 0.9 V and the lowest performance, so short resistance should be above 3.0 Ωcm2. Compared with the current standard membrane, there was a similar domestic membrane, which could confirm the possibility of localization of PEMFC polymer membrane.