DOI QR코드

DOI QR Code

Comparison of Characteristics and Performance of Membrane in Proton Exchange Membrane Fuel Cells

고분자전해질 연료전지 고분자막의 특성 및 성능 비교

  • Lee, Daewoong (Department of Chemical Engineering, Sunchon National University) ;
  • Lim, Daehyun (Department of Chemical Engineering, Sunchon National University) ;
  • Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University) ;
  • Chung, Hoi-Bum (Department of Chemical Engineering, Sunchon National University) ;
  • Yoo, Seung-Eul (KATECH) ;
  • Ku, Young-Mo (KATECH) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2019.09.20
  • Accepted : 2020.02.14
  • Published : 2020.05.01

Abstract

In the proton exchange membrane fuel cells (PEMFC), the development of a reinforced membrane with improved durability by a support is actively in progress in Korea. In this study, the initial performance and characteristics of four types of reinforced membranes were compared. Reinforced membranes with higher amounts of C-F chains in the polymer membrane showed lower water diffusion coefficients due to the hydrophobicity of the C-F chains. The thicker the polymer membrane, the more the hydrogen permeability decreased and the higher the OCV. Membrane with short resistance below 1.5 Ωcm2 showed OCV below 0.9 V and the lowest performance, so short resistance should be above 3.0 Ωcm2. Compared with the current standard membrane, there was a similar domestic membrane, which could confirm the possibility of localization of PEMFC polymer membrane.

고분자전해질 연료전지(PEMFC)에서 지지체에 의해 내구성을 향상시킨 강화막(Reinforced Membrane)의 개발이 국내에서 활발히 진행되고 있다. 본 연구에서는 4 종류의 강화막의 초기 성능 및 특성을 비교하였다. 고분자막의 C-F사슬의 양이 더 많은 강화막이 C-F사슬의 소수성 때문에 물 확산계수가 더 작음을 보였다. 고분자막 두께가 두꺼울수록 수소투과도가 감소하고 OCV가 증가함을 확인하였다. Short 저항이 1.5 Ωcm2 이하인 막은 OCV가 0.9 V이하이고 성능도 최저여서 Short 저항이 3.0 Ωcm2 이상이어야 함을 보였다. 현재 기준이 되는 국외 막과 비교했을 때 비슷한 국내 막도 있어서 PEMFC 고분자막의 국산화 가능성을 확인할 수 있었다.

Keywords

References

  1. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, X. and Tu, Z., "Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review," Fuel Processing Technology, 179, 203-228(2018). https://doi.org/10.1016/j.fuproc.2018.06.013
  2. Department of Energy, https://wwwenergygov/(2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml(2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
  5. Ministry of Science and Technology of the People's Republic of China, http://wwwmostgovcn/eng(2016).
  6. Jahnke, T., Futter, G., Latz, A., Malkow, T., G. Papakonstantinou, G., Tsotridis, P., Schott, M., Gerard, M., Quinaud, M., Quiroga, A. and Franco, A., "Performance and Degradation of Proton Exchange Membrane Fuel Cells: State of the art in Modeling from Atomistic to System Scale," Journal of Power Sources, 304, 207-233 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.041
  7. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Tech nology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  8. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31, 1831-1877(2006). https://doi.org/10.1016/j.ijhydene.2006.02.029
  9. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved Pemfc Performance and Life," J. Power Sources, 131, 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. Gore Enterprise Holdings, Inc, "Ion Conducting Membrane Having High Hardness And Dimensional Stability," PCT/US2002/027338.
  11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  12. Frank, D. C., Han, L. and Jeanette, E. O., Mitigation of Perfluorosulfonic Acid Membrane Chemical Degradation Using Cerium and Manganese Ions, ECS Transactions, 16(2), 1735-1747(2008).
  13. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Polymer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295(2018). https://doi.org/10.1007/s11814-018-0142-5
  14. Oh, S. H., Hwang, B. C., Lee, M. S., Lee, D. H. and Park, K. P., "Comparison of Hydrogen Crossover Current Density by Analysis Method of Linear Sweep Voltammetry (LSV) in Proton Exchange Membrane Fuel Cells," Korean Chem. Eng. Res., 56(2), 151-155 (2018). https://doi.org/10.9713/KCER.2018.56.2.151
  15. Lee, D. W., Hwang, B. C., Lim, D. H., Chung, H. B., You, S. E., Ku, Y. M. and Park, K. P., "Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells," Korean Chem. Eng. Res., 57(3), 338-343(2019).

Cited by

  1. 국내 연료전지 분야 연구동향 분석: 전극, 전해질, 분리판, 스택, 시스템, BOP, 진단분석 분야 vol.31, pp.6, 2020, https://doi.org/10.7316/khnes.2020.31.6.530