• Title/Summary/Keyword: 소형무인기

Search Result 136, Processing Time 0.023 seconds

Feasibility Study of Forward-Looking Imaging Radar Applicable to an Unmanned Ground Vehicle (무인 차량 탑재형 전방 관측 영상 레이다 가능성 연구)

  • Sun, Sun-Gu;Cho, Byung-Lae;Park, Gyu-Churl;Nam, Sang-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1285-1294
    • /
    • 2010
  • This study describes the design and verification of short range UWB(Ultra Wideband) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. We describe the relationship between bandwidth of transmitting signal and range resolution. A vivaldi antenna is designed and it's radiation pattern and reflection are measured. It is easy to make array antenna because of small size and thin shape. Aperture size of receiving array antenna is determined by azimuth resolution of radar image. The relation of interval of receiving antenna array, image resolution and aliasing of target on a radar image is analyzed. A vector network analyzer is used to obtain the reflected signal and corner reflectors as targets are positioned at grass field. Applicability of the proposed radar to UGV is proved by analysis of image resolution and penetrating capability for grass in the experiment.

Turbojet Engine Control of UAV using Artificial Neural Network PID (인공신경망 PID를 이용한 무인항공기 터보제트 엔진 제어)

  • Kim, Dae-Gi;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this paper, controller Propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Artificial Neural Network Error Back Propagation Algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the ANN PID controller effectively controls the fuel flow input of the control system. ANN PID results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

Agent-based Modeling and Analysis of Tactical Reconnaissance Behavior with Manned and Unmanned Vehicles (에이전트 기반 유·무인 수색정찰 전술행위 모델링 및 분석)

  • Kim, Ju Youn;Han, Sang Woo;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.47-60
    • /
    • 2018
  • Today's unmanned technology, which is being used in various industries, is expected to be able to make autonomous judgements as autonomous technology matures, in the long run aspects. In order to improve the usability of unmanned system in the military field, it is necessary to develop a technique for systematically and quantitatively analyzing the efficiency and effectiveness of the unmanned system by means of a substitute for the tasks performed by humans. In this paper, we propose the method of representing rule-based tactical behavior and modeling manned and unmanned reconnaissance agents that can effectively analyze the path alternatives which is required for the future armored cavalry to establish a reconnaissance mission plan. First, we model the unmanned ground vehicle, small tactical vehicle, and combatant as an agent concept. Next, we implement the proposed agent behavior rules, e.g., maneuver, detection, route determination, and combatant's dismount point selection, by NetLogo. Considering the conditions of maneuver, enemy threat elements, reconnaissance assets, appropriate routes are automatically selected on the operation area. It is expected that it will be useful in analyzing unmanned ground system effects by calculating reconnaissance conducted area, time, and combat contribution ratio on the route.

A rectifier capable of interfacing with power management system (전원관리시스템과 인터페이스 가능한 신형 정류기)

  • Cho, Man-Hyun;Min, Byeong-Rok;Kim, Gue-Hong;Ahn, Chi-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1277-1279
    • /
    • 2000
  • 통신용 전원시설의 고장은 거의 모든 통신서비스의 중단을 일으킬 수 있기 때문에 통신용 전일시설의 신뢰성은 매우 중요하다. 그 중 통신시스템에 직류 전원을 직접 공급하는 정류시스템은 가장 중요한 전원시스템으로 분류될 수 있다. 현재 여러 전화국 및 무인국사에서 운용되는 정류시스템은 전원관리시스템에 의해 실선으로 감시되고 있으나 중단없는 서비스제공을 위해서는 전원관리시스템과 통신을 통해 효율적으로 감시 및 제어가 이루어져야 한다. 따라서 한국통신에서는 이러한 요구에 부응하기 위하여 소형, 경량화 및 자연냉각방식등을 채택하여 운용유지보수 효율이 향상되고, 전원관리 시스템이 통신을 통해 시스템 감시 및 제어가 가능한 신형 정류기 개발을 완료하였다.

  • PDF

A Survey on Identification Technology of Low-altitude Small Drones and Suggestion of an Identification System (저고도 소형드론 식별기술 동향 조사 및 식별시스템 제안)

  • Shin, Jaeho;Shin, Seungchan;Ko, Sangho;Kang, Kyu-min;Hwang, Sunghyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.18-25
    • /
    • 2020
  • This paper provides the basic data of low-altitude small drone management technology to solve the problem of drone's dysfunction that generally increases with the demand of the drone. Accordingly, various low-altitude small drone identification technology employed in many countries were investigated and analyzed. Herein, the research cases which have been developed to obtain diverse information such as the flight's plan, pilot's identity and contact number, and the flight's information such as the location and speed of small drones were mainly investigated. Furthermore, the list of the features of each case was analyzed. Moreover, the present paper suggests a drone identification system configuration which complements the problems of existing technologies and verifies the proposed system through a flight test.

Derivation and Evaluation of Surface Reflectance from UAV Multispectral Image for Monitoring Forest Vegetation (산림 식생 모니터링을 위한 무인기 다중분광영상의 반사율 산출 및 평가)

  • Lee, Hwa-Seon;Seo, Won-Woo;Woo, Choongshik;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1149-1160
    • /
    • 2019
  • In this study, two radiometric correction methods deriving reflectance from UAV multispectral image for monitoring forest vegetation were applied and evaluated. Multispectral images were obtained from a small multispectral camera having 5 spectral bands. Reflectance were derived by applying the two methods: (1) the direct method using downwelling irradiance measurement and (2) the empirical line correction method by linking a set of field reflectance measured simultaneous with the image capture. Field reflectance were obtained using a spectroradiometer during the flight and used for building the linear equation for the empirical method and for the validation of image reflectance derived. Although both methods provided the high correlations between field reflectance and image-derived reflectance, their distributions were somewhat different. While the direct method provided rather stable and consistent distribution of reflectance all over the entire image area, the empirical method showed very unstable and inconsistent reflectance distribution. The direct method would be more appropriate for relatively wide area that requires more time to acquire image and may vary in downwelling irradiance and atmospheric conditions.

Evaluation of Measurement Accuracy for Unmanned Aerial Vehicle-based Land Surface Temperature Depending on Climate and Crop Conditions (기상 조건과 작물 생육상태에 따른 무인기 기반 지표면온도의 관측 정확도 평가)

  • Ryu, Jae-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.211-220
    • /
    • 2021
  • Land Surface Temperature (LST) is one of the useful parameters to diagnose the growth and development of crop and to detect crop stress. Unmanned Aerial Vehicle (UAV)-based LST (LSTUAV) can be estimated in the regional spatial scale due to miniaturization of thermal infrared camera and development of UAV. Given that meteorological variable, type of instrument, and surface condition can affect the LSTUAV, the evaluation for accuracy of LSTUAV is required. The purpose of this study is to evaluate the accuracy of LSTUAV using LST measured at ground (LSTGround) under various meteorological conditions and growth phases of garlic crop. To evaluate the accuracy of LSTUAV, Relative humidity (RH), absolute humidity (AH), gust, and vegetation index were considered. Root mean square error (RMSE) after minimizing the bias between LSTUAV and LSTGround was 2.565℃ under above 60% of RH, and it was higher than that of 1.82℃ under the below 60% of RH. Therefore, LSTUAV measurement should be conducted under the below 60% of RH. The error depending on the gust and surface conditions was not statistically significant (p-value < 0.05). LSTUAV had reliable accuracy under the wind speed conditions that allow flight and reflected the crop condition. These results help to comprehend the accuracy of LSTUAV and to utilize it in the agriculture field.

Feasibility Study of a Series Hybrid-Electric Propulsion System for a Fixed Wing VTOL Unmanned Aerial Vehicle (고정익 수직이착륙 무인항공기를 위한 하이브리드-전기 추진시스템의 타당성 연구)

  • Kim, Boseong;Bak, Jeonggyu;Yun, Senghyun;Cho, Sooyoung;Ha, Juhyung;Park, Gyusung;Lee, Geunho;Won, Sunghong;Moon, Changmo;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1097-1107
    • /
    • 2015
  • General VTOL aircraft uses gas turbine engine which has high power to weight ratio. However, in the VTOL UAV in small sector, the gas turbine as a prime mover is not adequate because of the limitation of the high fuel consumption ratio of the gas turbine. In this research, The Series Hybrid-Electric Propulsion System(SHEPS) has been proposed and technology survey & comparison analysis has conducted to constitute propulsion system for engine, electric motor and battery. To achieve this object a 65kg-class P-UAV from "Company I" was used. And to estimate the validity of power control algorithm and developed power management control, Matlab/simulink$^{(R)}$ has been used for the simulation. As a result, the developed algorithm worked comparatively well and the research has predicted that SHEPS was satisfied enough for 7 hour of endurance for mission profile.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

On the Pressurization Characteristics of Small Piezoelectric Hydraulic Pump for Brake System (브레이크용 소형 압전유압펌프 가압 동특성 해석)

  • Jeong, Min-Ji;Hwang, Jai-Hyuk;Bae, Jae-Sung;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.963-970
    • /
    • 2015
  • In this study, the pressurization characteristics of the small piezoelectric hydraulic pump for a brake system has been analyzed through modeling the full hydraulic pump components; the pump chamber, check valve, pump load, pump drive controller etc. To analyze the pressurization characteristics, the process of charging pressure in the chamber with stacked-layer piezoelectric actuator were firstly modeled. Secondly, the flow coefficient of the check valve in terms of valve opening has been calculated after computational fluid dynamics analysis, such as the pressure distribution around check valve and the flow rate, was conducted. Also the pump driving controller, which controls the input voltage to the actuator, was designed to make the load pressure follow the input pressure command. The simulation results find that it takes about 0.03ms to reach the operating load pressure required for the braking system. The simulation result was also verified through comparison to the result of the pump performance test.