• Title/Summary/Keyword: 소형드론

Search Result 85, Processing Time 0.019 seconds

Development of Video Transfer System using LTE/WiFi for Small UAV (LTE/WiFi 기반 소형 무인기용 영상 전송 시스템 개발)

  • Bae, Joong-Won;Lee, Sang-Jeong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • In this paper, we present the results of a developed LTE/Wi-Fi-based video transmission system which can be applied in small unmanned aerial vehicles of 25kg or less. The developed video transmission system comprised of airborne datalink terminal, ground datalink terminal, and used LTE and Wi-Fi wireless data communication technologies to transmit videos of resolution higher than HD (720p/30fps, 1080p/30fps) taken by small UAV. The airborne device is designed to efficiently transmit real-time streaming video through the incorporation of H.264 video processing board. Ground tests and evaluation indicated the possibility of the developed system to transmit real-time videos from close distance in regards to non-line-of-sight area.

Mid to Long Term R&D Direction of UAV for Disaster & Public Safety (재난치안용 무인기 중장기 연구개발 방향)

  • Kim, Joune Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.83-90
    • /
    • 2020
  • Disasters are causing significant damage to the lives and property of our society and are recognized as social problems that need to be solved nationally and globally. The 4th industrial revolution technologies affecting society as a whole such as the Internet of Things(IoT), Artificial Intelligence(AI), Drones(Unmanned Aerial Vehicles), and Big Data are continuously absorbed into the disaster and safety industries as scientific and technological tools for solving social problems. Very soon, twenty-nine domestic UAV-related organizations/companies will complete the construction of a multicopter type small UAV integrated system ('17~'20) that can be operated at disaster and security sites. The current work considers and proposes the mid-to-long term R&D direction of disaster UAV as a strategic asset of the national disaster response system. First, the trends of disaster and safety industry and policy are analyzed. Subsequently, the development status and future plans of small UAV, securing shortage technology, and strengthening competitiveness are analyzed. Finally, step-by-step R&D direction of disaster UAV in terms of development strategy, specialized mission, platform, communication, and control and operation is proposed.

Classification and evaluation of river environment using Hyperspectral images (초분광 영상정보를 활용한 하천환경 분류 및 평가)

  • Han, Hyeong Jun;Lee, Chang Hun;Kang, Joon Gu;Kim, Jong Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.423-423
    • /
    • 2019
  • RGB나 다중분광영상은 높은 공간 해상도로 인해 크기가 작은 물질의 클래스를 부여하는데 있어서는 효과적이지만 분광해상도가 낮아 다양한 종류의 지표물 분류 및 분광적으로 미세한 차이를 보이는 대상 체간의 분류에는 한계를 가지고 있다. 그러나 초분광 영상(Hyperspectral Image)은 대상 객체의 분광 반사곡선을 수백개의 연속적인 분광 파장대 영역으로 상세하게 해당 물체의 정보를 취득할 수 있는 기능을 가지고 있다. 최근 국내에서도 초분광 영상을 이용한 토지피복도 작성 및 환경 모니터링 등 다양한 분야에 적용하기 위한 연구가 시도되고 있다. 최근에는 드론과 같은 소형 UAV를 활용하여 경제적인 비용으로 시공간해상도가 높은 영상을 획득하는 것이 가능하게 되었으며 분광정보를 수집하는 영상 장비의 발전으로 드론에 탑재가 가능한 경량의 소형 초분광센서가 개발됨으로써 보다 높은 분광해상도의 영상을 취득할 수 있게 되었다. 본 연구에서는 효율적인 하천환경조사를 위해 UAV를 활용하여 고해상도 초분광 영상을 취득하였으며, 차원축소법과 분류기 적용에 따른 공간 분류 정확도 분석을 통해 하천환경에 대한 분류 및 평가를 실시하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다.

  • PDF

A Measures to Implements the Conservation and Management of Traditional Landscape Architecture using Aerial Photogrammetry and 3D Scanning (전통조경 보존·관리를 위한 3차원 공간정보 적용방안)

  • Kim, Jae-Ung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.77-84
    • /
    • 2020
  • This study is apply 3D spatial information per traditional landscape space by comparing spatial information data created using a small drone and 3D scanner used for 3D spatial information construction for efficient preservation and management of traditional landscaping space composed of areas such as scenic sites and traditional landscape architectures. The analysis results are as follows. First, aerial photogrammetry data is less accurate than 3D scanners, but it was confirmed to be more suitable for monitoring landscape changes by reading RGB images than 3D scanners by texture mapping using digital data in constructing orthographic image data. Second, the orthographic image data constructed by aerial photogrammetry in a traditional landscaping space consisting of a fixed area, such as Gwanghalluwon Garden, produced visually accurate and precise results. However, as a result of the data extraction, data for trees, which is one of the elements that make up the traditional landscaping, was not extracted, so it was determined that 3D scanning and aerial surveying had to be performed in parallel, especially in areas where trees were densely populated. Third, The surrounding trees in Soswaewon Garden caused many errors in 3D spatial information data including topographic data. It was analyzed that it is preferable to use 3D scanning technology for precise measurement rather than aerial photogrammetry because buildings, landscaping facilities and trees are dense in a relatively small space. When 3D spatial information construction data for a traditional landscaping space composed of area using a small drone and a 3D scanner free from temporal and spatial constraints and compared the data was compared, the aerial photogrammetry is effective for large site such as Hahoe Village, Gyeongju and construction of a 3D space using a 3D scanner is effective for traditional garden such as Soswaewon Garden.

A Study on the Production of Perspective Images using Drone (드론을 이용한 다시점 투영 이미지 제작 연구)

  • Choi, Ki-chang;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.953-958
    • /
    • 2022
  • Holographic Stereogram can provide the depth perception without the visual fatigue and dizziness because it use multiple images acquired from the multiple viewpoints. In order to produce a holographic stereogram, it is necessary to obtain perspective images of a live object and record it on film using a digital hologram printer. when acquiring perspective images, the hologram without distortion can be produced only when the perspective images with a constant distance between the camera and the target is obtained. If the target is small, it is possible to keep the constant distance from the camera to object. but if it is large, this is difficult to keep the constant distance. In this study, we photograph the large object using the POI (Point of Interest) function which is one of the smart flight modes of drone to produce perspective images required for the hologram production. after that, problems such as the unexpected shakings and distance change between camera and object is corrected in post production. as a result, we produce the perspective images.

Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV (드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가)

  • Ryu, Jae-Hyun;Oh, Dohyeok;Jang, Seon Woong;Jeong, Hoejeong;Moon, Kyung Hwan;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1055-1066
    • /
    • 2018
  • Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.

Application of the Small UAV Defense System (무인항공기 대응체계 도입 방안)

  • Park, Jehong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.145-152
    • /
    • 2017
  • As a popularization of small UAS to have improved flight performance and easiness of controlling, the UAS industry is increased and also small UAS is to be a new threat for airspace security of national strategic infrastructure. Rising the new threat makes the negative side effect of small UAS operation. This phenomena brought to new R&D needs "defense system" for small UAS/UAV - called Anti-Drone. The paper addressed case study of defects, accidents and threats by small UAS/UAV as world wide level, and research and development trend of UAS defense system as each technical category - CONOP (Concept of Operation), identification/recognition method and control/supremacy techniques. As a result, this suggests the direction what and where drone defense system should be applied first and required for Korean society in the view of society system (regime) and a point of view for minimizing side effect as UAS popularization.

Development of application for guidance and controller unit for low cost and small UAV missile based on smartphone (스마트폰을 활용한 소형 저가 유도탄 유도조종장치용 어플리케이션 개발)

  • Noh, Junghoon;Cho, Kyongkuk;Kim, Seongjun;Kim, Wonsop;Jeong, Jinseob;Sang, Jinwoo;Park, Chung-Woon;Gong, Minsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.610-617
    • /
    • 2017
  • In the recent weapon system trend, it is required to develop small and low cost guidance missile to track and strike the enemy target effectively. Controling the such small drone typed weapon demands a integrated electronic device that equipped with not only a wireless network interface, a high resolution camera, various sensors for target tracking, and position and attitude control but also a high performance processor that integrates and processes those sensor outputs in real-time. In this paper, we propose the android smartphone as a solution for that and implement the guidance and control application of the missile. Furthermore, the performance of the implemented guidance and control application is analyzed through the simulation.

Development of small multi-copter system for indoor collision avoidance flight (실내 비행용 소형 충돌회피 멀티콥터 시스템 개발)

  • Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2021
  • Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.

Research of Small Fixed-Wing Swarm UAS (소형 고정익 무인기 군집비행 기술 연구)

  • Myung, Hyunsam;Jeong, Junho;Kim, Dowan;Seo, Nansol;Kim, Yongbin;Lee, Jaemoon;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.971-980
    • /
    • 2021
  • Recently popularized drone technologies have revealed that low-cost small unmanned aerial vehicles(UAVs) can be a significant threat to prevailing power by operating in group or in swarms. Researchers in many countries have tried to utilize integrated swarm unmanned aerial system(SUAS) in the battlefield. Agency for Defense Development also identified four core technologies in developing SUAS: swarm control, swarm network, swarm information, and swarm collaboration, and the authors started researches on swarm control and network technologies in order to be able to operate vehicle platforms as the first stage. This paper introduces design and integration of SUAS consisting of small fixed-wing UAVs, swarm control and network algorithms, a ground control system, and a launcher, with which swarm control and network technologies have been verified by flight tests. 19 fixed-wing UAVs succeeded in swarm flight in the final flight test for the first time as a domestic research.