Journal of the military operations research society of Korea
/
v.34
no.3
/
pp.41-51
/
2008
Advanced high-tech weapons have enormous affect on combat strength in modern warfare. However, lack of maintenance can cause decrease in equipment operating rate as well as decrease in expectation on demonstrative effect of combat strength during wartime. Therefore it is essential for combat readiness that the optimum requirement of equipment maintenance cost are forecasted and included in the budget. In this paper, the trend of equipment maintenance cost about K-111 1/4t military vehicle is first analyzed by evaluating the performance data of field operation. Secondly, based on above analyzed results, the forecasting model of equipment maintenance cost is designed. Finally, by applying this forecasting model, suggestion and estimation method of equipment maintenance cost have presented for the foreseeable future.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.202-202
/
2020
산지 및 도시에서 발생하는 돌발홍수가 대상인 예경보는 홍수 도달시간이 짧고, 수위가 급격하게 상승하는 특성 때문에 1시간 선행시간 확보를 목표로 한다(MOLIT, 2016). 그러나 현재 돌발홍수 예경보 process에 소요되는 시간은 그 이상으로 확인되고 있다. 또한, 돌발홍수 예경보시스템으로부터 출력된 예측 결과를 사람이 직접 확인해야 한다는 단점도 있다. 본 연구에서는 돌발홍수 예경보 선행시간 1시간 확보를 목표로 backward-forward tracking 기법 기반 예측강우 편의보정기법을 제안하고자 한다. 이 기법은 현재 시점보다 이전에 보정계수를 결정함으로써 돌발홍수 예경보 소요시간을 크게 줄여 돌발홍수 대피시간을 확보할 수 있게 한다. 또한, 보정계수의 결정과 적용이 연속적으로 이루어짐에 따라 10분 간격으로 생성되는 MAPLE의 지속적인 편의보정이 가능하다. 예측강우에 대한 보정계수는 현재보다 10분 이전에 결정한다. 즉, 10분 이전 시점에 생성된 10분, 70분 선행 예측강우에 backward tracking을 적용하여 현재 시점의 호우 위치인 target window를 찾는다. 그리고 target window에서 보정계수를 결정한다. 결정된 보정계수는 돌발홍수발령 대상지역인 correction window의 현재 생성된 60분 선행 예측강우에 적용한다. 이 과정에서 과거 시점 10분 선행 예측강우와 현재 시점에 생성된 60분 선행 예측강우와의 forward tracking이 수행된다. Storm tracking 기법으로는 두 예측강우의 호우패턴에 대한 유사성을 정량화한 패턴상관계수를 이용하였다. 대상 호우사상으로는 2016년에 발생한 주요 호우사상을 선정하였다. 본 연구에서 제안하는 기법을 적용하고, 편의보정 결과를 기존 편의보정기법 적용 결과와 비교하였다.
항만의 개발은 투자시점에서 10여년이 소요되는 대규모 자본과 시간이 소요되는 사업이므로 항만 물동량을 사전에 정확히 예측하지 못하면, 과잉투자, 중복투자 또는 기관시설이 부족하는 등 큰 문제에 봉착하여 진다. 항만 물동량 예측은 항만 개발에 앞서 매우 중요한 과제이다. 따라서 본 논문에서는 파워심 프로그램을 활용한 항만 물동량 예측 시뮬레이터 개발에 앞서 기초 연구단계로 항만 물동량 발생 요소들의 관계를 정립하고 인과관계를 시스템 다이내믹스 기법을 이용하여 밝혔다. 이 시뮬레이터는 항만 물동량 예측 등 관련 산업기술 발전에 기여하리라 전망된다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.407-407
/
2017
홍수 예측을 위한 분포형 수문모형의 유출해석에서 하도추적은 수리학적 하도 추적과 수문학적 하도 추적 방법이 있다. 수리학적 하도 추적은 운동파 방정식, 확산파 방정식 등을 이용하여 수리현상을 시간과 공간으로 편미분하여 홍수량 예측을 한다. 수리적 하도 추적은 시간적, 공간적 안정조건(stability condition)을 만족해야된다. 면적이 큰 유역에서 적용할 때에는 계산에 소요되는 시간이 크다. 그러므로 국지호우로 인한 돌방홍수 예 경보를 위해서는 준실시간 또는 실시간 홍수 감시 및 예측이 필요하므로 계산에 소요되는 시간이 큰 수리학적 하도추적을 이용한 홍수 예측은 한계를 가진다. 본 연구에서는 유역면적이 큰 유역의 준실시간 홍수 감시 및 예측을 위하여 수문학적 하도추적 기법은 하천차수별 저류상수를 적용한 multi-Muskingum방법을 개발하여 모의하였다. multi-Muskingum 적용한 결과 모의시간이 상당히 단축되었으며 자료동화 기법을 통하여 모형의 정확도를 개선하였다.
Newton-Raphson 기법은 구조물의 비선형 해석에 널리 쓰이는 반복계산기법이다. 비선형 해석을 위한 반복계산기법은 컴퓨터의 발달을 감안해도 상당한 계산시간이 소요된다. 본 논문에서는 신경회로망 예측을 사용한 Predicted Newton-Raphson 반복계산기법을 제안하였다. 통상적인 Newton-Raphson 기법은 이전스텝에서 수렴된 점으로부터 현재 스텝의 반복계산을 시작하는 반면 제시된 방법은 현재 스텝 수렴해에 대한 예측점에서 반복계산을 시작한다. 수렴해에 대한 예측은 신경회로망을 사용하여 이전 스텝 수렴해의 과거경향을 파악한 후 구한다. 반복계산 시작점이 수렴점에 보다 근접하여 위치하므로 수렴속도가 빨라지게 되고 허용되는 하중스텝의 크기가 커지게 된다. 또한 반복계산의 시작점으로부터 이루어지는 계산과정은 통상적인 Newton-Raphson 기법과 동일하므로 기존의 Newton-Raphson 기법과 정확히 일치하는 수렴해를 구할 수 있다. 구조물의 정적 비선형 거동에 대한 수치해석을 통하여 modified Newton-Raphson 기법과 제시된 Predicted Newton=Raphson 기법의 정확성과 효율성을 비교하였다. 제시된 Predicted Newton-Raphson 기법은 modified Newton-Raphson 기법과 동일한 해를 산출하면서도 계산상의 효율성이 매우 큼을 확인할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.419-422
/
2024
최근 인공지능 기술의 발전과 함께 기계학습과 빅데이터를 융합한 서비스가 증가하게 되었고, 무분별한 데이터 수집과 학습으로 인한 개인정보 유출 위험도가 커졌다. 따라서 프라이버시를 보호하면서 기계학습을 수행할 수 있는 기술이 중요해졌다. 동형암호 기술은 정보 주체자의 개인정보 기밀성을 유지하면서 기계학습을 할 수 있는 방법 중 하나이다. 그러나 평문 크기에 비례하여 암호문 크기와 연산 결과의 노이즈가 커지는 동형암호의 특징으로 인해 기계학습 모델의 예측 정확도가 감소하고 학습 시간이 오래 소요되는 문제가 발생한다. 본 논문에서는 부분 동형암호화된 데이터셋으로 로지스틱 회귀 모델을 학습할 수 있는 기법을 제안한다. 실험 결과에 따르면 제안하는 기법이 종래 기법보다 예측 정확도를 59.4% 향상시킬 수 있었고, 학습 소요 시간을 63.6% 개선할 수 있었다.
본 논문은 리튬-이온 배터리의 OCV 예측기법에 대해서 제안하였다. OCV는 배터리의 SOC를 추정할 때 중요한 정보이다. 하지만, 정확한 OCV를 측정하기 위해서는 최소 30분 이상의 휴지시간이 소요된다는 단점을 가지고 있다. 따라서 본 논문은 이런 단점을 해결하기 위해 OCV 예측기법에 대해서 제안하였다. 제안한 OCV 예측기법의 타당성은 배터리 모델의 OCV와 예측된 OCV를 비교하는 시뮬레이션 통해 검증하였다.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.924-927
/
2008
실시간 시스템 개발에 있어서 태스크들의 응답시간을 예측하는 것은 가장 중요한 문제로 인식 되고 있다. 그러나 manycore 환경에서는 응답시간을 예측하는 것이 몹시 어려워 만족할 만한 결과를 이끌어내지 못하고 있다. 과거에 스케줄링과 동기화 정책을 고려하여 최악 응답시간을 예측하는 방법이 제시되기도 했지만, 상당히 제한적인 태스크 모델을 가정하여 실제로 적용하기에는 어려울 뿐만 아니라 예측한 결과도 시스템의 정확한 응답시간과 상당한 괴리가 있다. 반면, 시뮬레이션 기법은 시스템의 스케줄링 상태를 시뮬레이션해 봄으로써, 상대적으로 정확한 응답시간을 예측하는 것을 가능하게 한다. 따라서 본 논문에서는 범용적이면서도 매우 효과적인 manycore를 위한 시뮬레이션 기법을 제안한다. 제안하는 기법의 우수성은 시스템 모델의 변화에 따라 소요되는 시뮬레이션 시간을 측정하는 실험을 통해서 확인한다.
Choi, Hyun Gu;Jeong, Seok Il;Park, Jin Yong;Kwon, E Jae;Lee, Jun Yeol
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.387-387
/
2022
기존 홍수기시 댐 운영은 예측 강우와 실시간 관측 강우를 이용하여 댐 운영 모형을 수행하며, 예측 결과에 따라 의사결정 및 댐 운영을 실시하게 된다. 하지만 이 과정에서 반복적인 분석이 필요하며, 댐 운영 모형 수행자의 경험에 따라 예측 결과가 달라져서 반복작업에 대한 자동화, 모형 수행자에 따라 달라지지 않는 예측 결과의 일반화가 필요한 상황이다. 이에 댐 운영 모형에 AI 기법을 적용하여, 다양한 강우 상황에 따른 자동 예측 및 모형 결과의 일반화를 구현하고자 하였다. 이를 위해 수자원 분야에 적용된 국내외 129개 연구논문에서 사용된 딥러닝 기법의 활용성을 분석하였으며, 다양한 수자원 분야 AI 적용 사례 중에서 댐 운영 예측 모형에 적용한 사례는 없었지만 유사한 분야로는 장기 저수지 운영 예측과 댐 상·하류 수위, 유량 예측이 있었다. 수자원의 시계열 자료 활용을 위해서는 Long-Short Term Memory(LSTM) 기법의 적용 활용성이 높은 것으로 분석되었다. 댐 운영 모형에서 AI 적용은 2개 분야에서 진행하였다. 기존 강우관측소의 관측 강우를 활용하여 강우의 패턴분석을 수행하는 과정과, 강우에서 댐 유입량 산정시 매개변수 최적화 분야에 적용하였다. 강우 패턴분석에서는 유사한 표본끼리 묶음을 생성하는 K-means 클러스터링 알고리즘과 시계열 데이터의 유사도 분석 방법인 Dynamic Time Warping을 결합하여 적용하였다. 강우 패턴분석을 통해서 지점별로 월별, 태풍 및 장마기간에 가장 많이 관측되었던 강우 패턴을 제시하며, 이를 모형에서 직접적으로 활용할 수 있도록 구성하였다. 강우에서 댐 유입량을 산정시 활용되는 매개변수 최적화를 위해서는 3층의 Multi-Layer LSTM 기법과 경사하강법을 적용하였다. 매개변수 최적화에 적용되는 매개변수는 중권역별 8개이며, 매개변수 최적화 과정을 통해 산정되는 결과물은 실측값과 오차가 제일 적은 유량(유입량)이 된다. 댐 운영 모형에 AI 기법을 적용한 결과 기존 반복작업에 대한 자동화는 이뤘으며, 댐 운영에 따른 상·하류 제약사항 표출 기능을 추가하여 의사결정에 소요되는 시간도 많이 줄일 수 있었다. 하지만, 매개변수 최적화 부분에서 기존 댐운영 모형에 적용되어 있는 고전적인 매개변수 추정기법보다 추정시간이 오래 소요되며, 매개변수 추정결과의 일반화가 이뤄지지 않아 이 부분에 대한 추가적인 연구가 필요하다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1996.06a
/
pp.139-142
/
1996
움직임 보상형 프레임간 내삽기법은 다른 동영상 압축기법과 함께 사용함으로써, 그 압축효과를 더욱 향상시킬 수 있는 장점을 가지고 있다. 그러나 블록에 기반한 기존의 움직임 보상형 프레임간 내삽기법을 움직이는 물체의 경계에서 심한 블록효과를 보인다. 본 논문에서는 Quad-tree 기법을 이용해 화소단위의 움직임을 추정하고, 이를 이용해 드러난 영역과 가리워지는 영역을 정확 히 예측해 보상함으로써 움직이는 물체의 경계에서 나타나는 블럭효과를 제거했다. 그리고 제안된 방법에서는 순방향이나 역방향 움직임추정 시 송신측으로 부터 보내지는 움직임 벡터를 이용함으로써 움직임 추정을 위해 소요되는 계산량을 최소화하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.