Most plagiarism detection systems evaluate the similarity of source codes and detect plagiarized program pairs. If we use the source codes in plagiarism detection, the source code security can be a significant problem. Plagiarism detection based on target code can be used for protecting the security of source codes. In this paper, we propose a new plagiarism detection technique for Java programs using bytecodes without referring their source codes. The plagiarism detection procedure using bytecode consists of two major steps. First, we generate the token sequences from the Java class file by analyzing the code area of methods. Then, we evaluate the similarity between token sequences using the adaptive local alignment. According to the experimental results, we can find the distributions of similarities of the source codes and that of bytecodes are very similar. Also, the correlation between the similarities of source code pairs and those of bytecode pairs is high enough for typical test data. The plagiarism detection system using bytecode can be used as a preliminary verifying tool before detecting the plagiarism by source code comparison.
Son Jeong-Woo;Park Seong-Bae;Lee Sang-Jo;Park Se-Young
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.157-159
/
2006
표절이란 원작자의 허락 없이 저작물의 일부분 혹은 전체를 사용하는 것이다. 이는 특히 대학의 프로그래밍 코스에서 심각한 문제가 된다. 이를 해결하기 위해 많은 표절 검출 시스템이 연구되어 왔으나 복사된 소스코드에 필요 없는 코드를 첨가할 경우, 성능이 낮아지는 문제가 있었다. 이 문제는 기존 시스템이 소스코드의 구조적인 정보를 효율적으로 다루지 않았기 때문이다. 본 논문에서는 Parse Tree Kernels를 이용한 소스 코드 표절 검출 시스템을 제안한다. 제안한 시스템은 Parse Tree Kernels를 이용하여 소스코드의 구조적 정보를 효과적으로 다룬다. 이를 보이기 위한 실험에서는 기존의 표절 검출 시스템인 SID, JPlag와 비교하여 제안한 시스템이 소스 코드의 구조적 정보를 기존 시스템에 비해 효율적으로 이용하고 있음을 보였다.
Plagiarism refers to the act of using the original data as if it were one's own without revealing the source. The plagiarism of source code causes a variety of problems, including legal disputes. Plagiarism in software projects is usually determined by measuring similarity by comparing every pair of source code within two projects. However, blindly comparing every pair has been a huge computational burden, causing a major factor of not using tools of better accuracy. If we can only compare pairs that are probable to be clones, eliminating pairs that are impossible to be clones, we can concentrate more on improving the accuracy of detection. In this paper, we propose a method of selecting highly probable candidates of clone pairs by pre-classifying suspected source-codes using a machine-learning model called code2vec.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.05a
/
pp.1198-1206
/
2006
프로그램 소스코드 표절 검사에 대한 기존 방법은 크게 지문(finger-print)법과 구조기반 검사법으로 나뉘며, 주로 단어의 유사성이나 발생빈도를 사용하거나 소스코드 구조상의 특징으로 두 소스간의 유사성을 비교한다. 본 연구에서는 프로그래밍 언어의 예약어 시퀀스를 사용하여 소스코드들 간의 유사성을 비교하고, 이 결과를 FCA(Formal Concept Analysis)를 통해 해석하고 시각화 하는 방법을 제시한다. 일반적인 VSM(Vector Space Model)과 같은 단일 단어 분석으로는 단어의 인접성을 구분할 수 없으므로 단어의 시퀀스 분석이 가능하도록 알고리즘을 구성하였으며 이러한 방식은 지문법의 단점인 소스코드의 부분적인 표절 탐지의 난점을 해결할 수 있고 함수의 호출 순서나 수행 순서에 상관없이 표절을 탐지할 수 있는 장점을 가진다. 마지막으로 유사도 측정결과는 FCA를 이용하여 격자(lattice)로 시각화됨으로써 이용자의 이해도를 높일 수 있다.
Program Plagiarism is an infringement of software copyright. In detecting program plagiarism, many different source program comparison methods has been studied. But, it is not easy to detect plagiarized program that made a few cosmetic changes in program structures and variable names In this paper, we propose a new ground-breaking technique in detecting plagiarism by Memory Access Log Analysis.
KIPS Transactions on Computer and Communication Systems
/
v.3
no.6
/
pp.189-196
/
2014
Though the plagiarism is illegal and should be avoided, it still occurs frequently. Particularly, the plagiarism of source codes is more frequently committed than others since it is much easier to copy them because of their digital nature. To prevent code plagiarism, there have been reported a variety of studies. However, previous studies for plagiarism detection techniques on source codes do not consider the data structures although a source code consists both of data structures and algorithms. In this paper, a plagiarism detection technique for source codes considering data structures is proposed. Specifically, the data structures of two source codes are represented as sets of trees and compared with each other using Hungarian Method. To show the usefulness of this technique, an experiment has been performed on 126 source codes submitted as homework results in an object-oriented programming course. When both the data structures and the algorithms of the source codes are considered, the precision and the F-measure score are improved 22.6% and 19.3%, respectively, than those of the case where only the algorithms are considered.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.916-918
/
2005
표절이란 원본 자료의 출처를 밝히지 않고 사용하는 행위인데, 프로그램 표절은 표절로 의심되는 유사 소스코드를 말한다. 프로그램 표절을 검출하는 방법은 소스코드의 토큰 요약 후 비교하거나 단어와 키워드의 개수를 측정해 통계적으로 비교, 계산하거나 또는 프로그램의 구문구조를 비교하는 등 여러 접근 방법이 있다. 본 조사 보고서에서는 프로그램 표절 검출 방법 및 응용 도구에 대한 최근 연구 동향을 조사하여 정리하고 향후 발전 방향을 토론한다.
Studies on software plagiarism detection, prevention and judgement have become widespread due to the growing of interest and importance for the protection and authentication of software intellectual property. Many previous studies focused on comparing all pairs of submitted codes by using attribute counting, token pattern, program parse tree, and similarity measuring algorithm. It is important to provide a clear-cut model for distinguishing plagiarism and collaboration. This paper proposes a source code clustering algorithm using a probability model on extreme value distribution. First, we propose an asymmetric distance measure pdist($P_a$, $P_b$) to measure the similarity of $P_a$ and $P_b$ Then, we construct the Plagiarism Direction Graph (PDG) for a given program set using pdist($P_a$, $P_b$) as edge weights. And, we transform the PDG into a Gumbel Distance Graph (GDG) model, since we found that the pdist($P_a$, $P_b$) score distribution is similar to a well-known Gumbel distribution. Second, we newly define pseudo-plagiarism which is a sort of virtual plagiarism forced by a very strong functional requirement in the specification. We conducted experiments with 18 groups of programs (more than 700 source codes) collected from the ICPC (International Collegiate Programming Contest) and KOI (Korean Olympiad for Informatics) programming contests. The experiments showed that most plagiarized codes could be detected with high sensitivity and that our algorithm successfully separated real plagiarism from pseudo plagiarism.
Kim, Eun-Hye;Lee, Song-A;Heo, Jun;Han, Kyung-Sook;Oh, Yong-Chul
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.536-539
/
2007
JSMS(Java source code Similarity Measurement System)는 자바 소스 코드의 유사도를 측정하고 이와 관련한 소스코드의 정보를 시각적으로 표시하는 시스템이다. 기존의 표절 검사 시스템은 소스코드의 구조적 특징을 반영하지 못해 유사도 결과의 신뢰성이 낮고 대부분 편리성과 가독성이 좋지 않아 사용하기 불편하였다. 본 논문에서 제안하는 JSMS는 이러한 단점을 보완하기 위해 함수 선형화를 사용하여 소스코드의 구조적 특징을 반영하였다. 또한 쉽고 간단한 조작으로 편리성을 제공하며, 관련 정보와 유사 구간을 시각적으로 표시하여 가독성을 높였다. 향후 다양한 언어 지원과 폭넓은 시각적 정보 제공을 보완하여 사용자의 학습 자료로 사용할 수 있으며, 소스코드 표절의 객관적 기준이 되는 도구로 활용 가능하다.
Tools for detecting cross-language clones usually compare abstract-syntax-tree representations of source code, which lacks scalability. In order to compare large source code to a practical level, we need a similarity checking technique that works on a token level basis. In this paper, we define common tokens that represent all tokens commonly used in programming languages of different paradigms. Each source code of different language is then transformed into the list of common tokens that are compared. Experimental results using exEyes show that our proposed method using common tokens is effective in detecting cross-language clones.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.