• Title/Summary/Keyword: 소셜쇼핑

Search Result 74, Processing Time 0.019 seconds

An Exploratory Study on Measuring Brand Image from a Network Perspective (네트워크 관점에서 바라본 브랜드 이미지 측정에 대한 탐색적 연구)

  • Jung, Sangyoon;Chang, Jung Ah;Rho, Sangkyu
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.4
    • /
    • pp.33-60
    • /
    • 2020
  • Along with the rapid advance in internet technologies, ubiquitous mobile device usage has enabled consumers to access real-time information and increased interaction with others through various social media. Consumers can now get information more easily when making purchase decisions, and these changes are affecting the brand landscape. In a digitally connected world, brand image is not communicated to the consumers one-sidedly. Rather, with consumers' growing influence, it is a result of co-creation where consumers have an active role in building brand image. This explains a reality where people no longer purchase products just because they know the brand or because it is a famous brand. However, there has been little discussion on the matter, and many practitioners still rely on the traditional measures of brand indicators. The goal of this research is to present the limitations of traditional definition and measurement of brand and brand image, and propose a more direct and adequate measure that reflects the nature of a connected world. Inspired by the proverb, "A man is known by the company he keeps," the proposed measurement offers insight to the position of brand (or brand image) through co-purchased product networks. This paper suggests a framework of network analysis that clusters brands of cosmetics by the frequency of other products purchased together. This is done by analyzing product networks of a brand extracted from actual purchase data on Amazon.com. This is a more direct approach, compared to past measures where consumers' intention or cognitive aspects are examined through survey. The practical implication is that our research attempts to close the gap between brand indicators and actual purchase behavior. From a theoretical standpoint, this paper extends the traditional conceptualization of brand image to a network perspective that reflects the nature of a digitally connected society.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

A Comparative Study of Domestic Travel Patterns and Determinant Factors Affecting Satisfaction by Generations (대한민국 국민의 세대별 국내여행 방식 및 만족도 영향요인)

  • Mi-Sook Lee;Yoon-Joo Park
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.137-166
    • /
    • 2020
  • While South Koreans overseas travelling rate has been increased every year, domestic travelling rate has been at a standstill for several years. The purpose of this study is to analyze domestic traveling styles of Koreans according to their generations in order to provide generation-specific traveling services. For this purpose, we categorized the survey respondents into four different generations, which are Millennium (age 19~34), X generation (35~54), Baby Boomer (55~64) and senior by following the criterions of the Korea National Tourism Organization. After then, we analyze factors related to travel preparation process, the actual traveling activities and satisfaction after the travel. In this study, 16,713 data collected by the Ministry of Culture, Sports and Tourism are used. The results of this study show that Korean people tends to acquire domestic traveling information from their own or acquaintances past experiences. Also, they do not prefer the organized trip for domestic travels, thus do not buy package products a lot. In addition, natural scenery, rich in cultural heritage, and convenient accommodation are the most important determinant factors affecting the overall travel satisfaction of level for all generations. The traveling characteristics for each generation are as follows. Millennium get traveling information from the internet a lot, and more specifically, they refer portal sites and social network services (SNS) in many cases. Also, they tend to travel in summer peak season to popular destinations and pursues active traveling experiences. Generation X has similar traveling patterns with Millennium, however they major transportation method is using their own car. Also, transportation convenience and satisfactory leisure activity are important factors affecting the overall satisfaction level to Generation X. On the other hand, Baby boomer generation has a greater emphasis on appreciation of nature, visiting famous restaurants, and relaxation, rather than actively participating experiencing programs. They travel evenly in summer and spring/fall season to many different areas instead of focusing on popular tourist spots. In addition, shopping and eating delicious food are the important factors affecting the overall satisfaction level for them. Lastly, Senior generation has similar characteristics with Baby boomer in many ways, however, they travel a lot on the same day using public transportations or car rental service. They prefer spring and autumn trips rather than summer peak season, and tend to buy packaged travel products a lot compared with other generations. If these different traveling characteristics of each generation are considered for organizing and customizing tourism services, it is expected that domestic tourism satisfaction level will be ultimately increased.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.