• Title/Summary/Keyword: 소성해석법

Search Result 441, Processing Time 0.026 seconds

Fracture-mechanical Modeling of Tool Wear by Finite Element Analysis (유한요소해석에 의한 공구마모의 파괴역학적 모델링 연구)

  • Sur, Uk-Hwan;Lee, Yeong-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.135-140
    • /
    • 2004
  • Wear mechanisms may be briefly classified by mechanical, chemical and thermal wear. A plane strain finite element method is used with a new material stress and temperature fields to simulate orthogonal machining with continuous chip formation. Deformation of the workpiece material is healed as elastic-viscoplastic with isotropic strain hardening and the numerical solution accounts for coupling between plastic deformation and the temperature field, including treatment of temperature-dependent material properties. Effect of the uncertainty in the constitutive model on the distributions of strait stress and temperature around the shear zone are presented, and the model is validated by comparing average values of the predicted stress, strain, and temperature at the shear zone with experimental results.

Design Methods for Eccentrically Loaded Bolt Groups for the Single Plate Connections Considering Sloped Edge Distance (편심전단을 받는 단일판접합부의 경사연단거리를 고려한 볼트군의 설계법)

  • Choi, Sun Kyu;Yoo, Jung Han;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 2014
  • A single plate connection(SPC) consists of a plate welded to the columns and bolts connected to the beam web. The SPC is widely used for a simple shear connection of steel structure because it is easy-to-fabricated, easy-to-installed and economical. The conventional SPC is used for 2 to 12 bolts in a single vertical row. It is designed to limit the plate thickness by bolt diameter to obtain flexible and ductile connections. The design strength for eccentric shear shall be the lesser of the shear strength of bolts or bearing strength of plate and when the design strength is decided by edge distance failure, the results can be very conservative. Although the research on special solution for 'weak-plate/strong-bolt' model with 2 to 4 bolts has been conducted by L. S. Muir, and W. A. Thonton, 2004, study on generalized design procedures did not conduct. This study proposed design procedure for evaluation of the design strength of eccentric shear bolt groups on a single plate connection based on the actual edge distance and the direction of bolt reaction forces by using elastic vector method(EVM) and instantaneous center of rotation method(ICM).

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Seong-Ung;Hong, Sun-Hyeok;Jeon, Hyeong-Yong;Jo, Seok-Su;Ju, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.

An Analytical Study on Flexural Behaviors of CFT Girder (CFT 거더의 휨 거동 평가를 위한 해석적 연구)

  • Ko, Hee Jung;Moon, Jiho;Lee, Hak Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.35-35
    • /
    • 2011
  • CFT가 갖는 다양한 구조적 이점으로 인해, 축력이 지배적인 기둥 구조물에만 주로 적용되던 CFT 요소가 점차 거더에 적용되어 가고 있다. 그러나, 현재 CFT 요소에 대한 설계 기준은 축력이 지배적인 보-기둥 구조물에 대한 것으로 제한되어 있으며, 휨이 지배적인 보 구조물에 대한 현행 설계 기준의 적용성을 검토해야 할 필요가 있다. 현행 설계기준에서 제시하고 있는 CFT 요소의 극한 강도 평가방법은 소성응력분배법 및 변형률적합법으로 구분되어지며, 각 방법을 이용한 극한 강도의 평가결과를 기존 연구자들의 CFT 요소 휨 실험결과와 비교 분석하였다. 휨 강성 평가에 대한 타당성을 검증하기 위해 AISC에서 제시하는 휨 강성 평가식을 기존 실험 연구와 비교 검토하였으며, 아울러 압축력에 따라 휨 강성을 보정할 수 있도록 수정된 Roeder et al.의 제안식을 함께 검토하였다. 검토 결과, 강도 평가에 있어서는 설계 기준에서 제안하는 두 방법 모두 CFT 거더의 휨 강도를 적절히 평가할 수 있었으며, 강성 평가에 있어서는 설계 기준의 제안식이 휨 초기 강성을 적절히 평가하는 반면 사용 단계에서의 휨 강성은 Roeder et al.의 수정된 강성 평가식에 의해 적절히 평가할 수 있음을 확인하였다.

  • PDF

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Sung-Woong;Hong, Soon-Hyeok;Jeon, Hyoung-Yong;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.258-265
    • /
    • 2001
  • Turbine blade is subject to force of three type ; torsional force by torsion-mount, centrifugal force by rotation of rotor and cyclic bending force by steam pressure. Cyclic bending force of them is main factor on fatigue fracture. In the X-ray diffraction method, the change in the values related to plastic deformation and residual stress near the fracture surface mat be determined, and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade parts was predicted. Failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

  • PDF

Simulation of Plate Deformation by Triangle Heating Process (삼각가열에 의한 판 변형의 시뮬레이션)

  • Chang-Doo Jang;Dae-Eun Ko;Sung-Choon Moon;Yong-Rok Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.66-74
    • /
    • 2001
  • Plate bending process is indispensible in shipbuilding. The process includes press bending process and heating process. Especially the heating process is carried out exclusively by skillful workers. Many researches have been made to automate the heating process. This study was carried out as a fundamental study to develop a efficient analysis method for triangle heating and focused on clarifying the deformation characteristics of plate by triangle heating and essential elements effect on the deformation. In this paper, we proposed an analysis model for thermal-elastic-plastic analysis and simulated the deformation by triangle heating using ANSYS based on the experimental results of Jang et al.(2001). Also, we showed the deformation characteristics more clearly by comparing the deformation due to triangle heating and line heating in case that the total heat input is same. Finally, we investigated the change characteristics of deformation elements according to the volumetric heat input.

  • PDF

FEM Analysis on the Strength Safety of a LPG Cylinder (LPG용기의 강도 안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.55-59
    • /
    • 2007
  • This paper presents the strength safety of a LPG cylinder, which is fabricated by a steel sheet forming and a welding technology. The strength safety of a cylinder is guaranteed by analyzing a stress distribution of a LPG cylinder structure using a finite element method. The FEM computed results indicate that the hydraulic test gas pressure of $31kg/cm^2$ generates a concentrated local stress near the upper round end plate, which exceeds the yield strength of a LPG cylinder. Thus, the current hydraulic test pressure may be rechecked and revised because this pressure increases the fatigue failure and decreases the lift of the pressure vessel. The normal operation and sealing gas pressures such as $9kg/cm^2\;and\;18.6kg/cm^2$ are relatively safe for a steel LPG cylinder.

  • PDF

Finite Element Formulation for the Finite Strain Thermo-Elasto-Plastic Solid using Exponential Mapping Algorithm : Model and Time Integration Scheme (지수 사상을 이용한 비선형 열-탄소성 고체의 유한요소해석 : 모델과 시간적분법)

  • 박재균
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • The linear analysis for the balance of linear momentum of a structure is relatively easy to perform, but the error becomes large when the structure experiences large deformation. Therefore, the material and geometric nonlinearity need to be considered for the precise calculations in that case. The plastic flow of a ductile steel-like metal mainly transforms its dissipated mechanical energy into heat, which transfers under the first and second law of thermodynamics. This heat increases the temperature of the material and the strength of the material decreases accordingly, which affects mechanical behavior of the given structure. This paper presents a finite-strain thermo-elasto-plastic steel model. This model can handle large deformation and thermal load simultaneously, which is common during earthquake periods. Two 3-dimensional finite element analyses verify this formulation.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.