• Title/Summary/Keyword: 소성역 체결

Search Result 4, Processing Time 0.017 seconds

Finite Element Analysis of Mechanical Behavior of Bolt Tightened in Plastic Region (소성역 체결 볼트의 기계적 거동 유한요소해석)

  • Cho, Sung-San;Shin, Chun-Se
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • Plastic region tightening is widely used in critical bolted joints in internal combustion engines in order to reduce the engine weight by maximizing the use of load-carrying capacity of bolt. Mechanical behavior of bolt tightened in plastic region under external axial tensile load is investigated for various friction conditions using three dimensional finite element analysis. The behavior of bolt tightened in elastic region as well as that in tensile test are investigated for comparison. Tightening process is simulated by rotating the bolt in order to examine the friction effect realistically. It is revealed that the bolt tightened in plastic region can carry more external load until the joint is opened, and yields at lower bolt load than the bolt tightened in elastic region. The friction coefficient has effect on the yield load, but not on the load-carrying capacity. Moreover, the scatter in the bolt preload due to friction begins with plastic deformation of bolt in the angle tightening control, whereas it begins with the onset of tightening in the torque tightening control. The observations are interpreted with the residual torsional stress in the bolt generated during the tightening.

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF

Study on the Tightening Force and the Friction Coefficient in a Bolt tightened upto the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.33-37
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding is governed by the combined stresses due to the axial force developed in the bolt and the frictional torque developed on the thread in contact with the nut. Consideration is taken account of the fact that the unused portion of the thread has least sectional area being subject to initial yielding. Once yielding has taken place some strain hardening effect will result, Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of common and fine series thread are used for computational purposes. Variation of axial forces and frictional torques vs. the frictional coefficients tare presented together with other plots showing some characteristics of bolt under plastic deformation.

  • PDF

Flexural Strength Evaluation of Steel Plate-Concrete Composite Beam using Bolted (절곡 강판을 볼트로 체결한 강판-콘크리트 합성보의 휨강도 평가)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.126-136
    • /
    • 2018
  • A steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine inhomogeneous two materials. The steel plate is assembled by welding an existing composite beam. In this study, new steel-plate concrete composite beam, called a SPC Beam, was developed to reduce the shear connector and improve the workability. The SPC Beam was composed of folding steel plates and concrete, without a shear connector. The folding steel plate was assembled using high strength bolt instead of welding. To improve the workability in field construction, a hat-shaped Cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode. The flexural strength of the specimen for positive moment and negative moment was calculated using the plastic stress distribution method. The test results showed that the flexural strength of the new SPC Beam had 80% of the strength of a complete composite beam. In addition, increasing the composite ratio was possible through clearance controls of the cap. In this study, the performance of the SPC Beam was verified through additional experiments and analyses with the cross-sectional shape and cap as variables, because the representative shape in the positive negative moment region is targeted.