본 논문에서는 렌즈의 흠집을 추출할 수 있는 퍼지 기법을 이용한 렌즈 흠집 검출 방법을 제안한다. 제안된 방법은 렌즈 영상을 그레이 영상으로 변환한 후, 캐니 마스크를 이용하여 렌즈의 경계선을 추출한다. 추출된 렌즈의 경계선에 대해 평균 이진화와 모폴로지를 이용하여 렌즈 경계선을 보정한다. 렌즈 경계선이 보정된 영상에서 Seed Fill 알고리즘을 적용하여 렌즈의 내부 영역만을 추출한다. 추출된 렌즈의 내부 영역에 해당하는 원 영상에서 소벨 마스크를 적용하여 렌즈 내부 영역의 에지를 추출한다. 렌즈 내부 영역에서 추출된 에지 객체들의 정보를 이용하여 흠집과 비흠집을 분류하는 퍼지 기법을 적용하여 흠집 영역을 추출한다. 본 논문에서 제안된 렌즈의 흠집 검출 방법의 성능을 평가하기 위해 CHEMI, MID, HL, HM 시력 보정용 렌즈를 대상으로 실험한 결과, 제안된 방법이 흠집을 효과적으로 검출하는 것을 확인하였다.
DTV Full HD급이 보편화되면서 LCD(Liquid Crystal Display)의 잔상효과 제거와 격동적인 화면에서의 고화질 구현을 위해 수신 단에서 후처리 과정으로 움직임 보상 기반 프레임 보간(MCFI)이 사용되고 있다. MCFI는 움직임 정보를 이용하여 삽입될 화면을 보간하는데 이러한 움직임 정보를 후처리 없이 바로 사용하는 건 많은 열화 현상 및 보간 된 물체의 구조 변형 결과를 초래한다. 이에 본 논문에서는 움직임 벡터 후처리 가법으로서 에지 방향 정보기반 가변 가중치 벡터 중앙값 필터를 이용하여 움직임 벡터 처리 기법을 제안한다. 제안한 움직임 벡터 처리 가법은 먼저 소벨 마스크와 가중치 최대빈도필터를 통해 에지 정보맵을 생성한다. 그리고 $3{\times}3$ 윈도우 내 움직임 벡터들의 중앙값을 구한 후 그 중앙값과 윈도우 내 움직임 벡터들과의 변위 값을 이용하여 이상치(outlier) 움직임 벡터를 제거한다. 마지막으로 에지 정보맵의 에지방향 연속성과 움직임 벡터와의 공간적 상호 연관성을 고려하여 가중치 벡터 중앙값 필터를 적용한다. 실험 결과 PSNR은 "0.5 ~ 1" dB, 유사성 명가 지표인 SSIM은 "0.4 ~ 0.8" %의 성능 향상을 보였다.
방사선 치료에 있어서 치료전 및 치료도중에 치료부위를 확인하기 위한 수단으로 보편적으로 사용되고 있는 포탈필름은 높은 에너지를 이용하여 촬영되는 것이므로 영상이 매우 흐리며 어둡다는 구조적인 문제점이 있다. 이러한 영상을 개선하기 위하여는 치료필드와 그 주변필드로 영상을 먼저 분할한 후, 각 필드 별로 영상처리를 해야만 한다. 본 연구에서는 소벨 탐지자, 레이블링 기법을 이용하여 최적의 문턱치를 찾아내어 포탈영상을 분할 한 후 형태학적 세선화기법들을 적용하여 포탈영상 분할하는 알고리즘을 제안하였다. 이 알고리즘은 포탈영상에서 불필요한 에지들은 제거하고 치료필드 에지만을 탐지하며 촬영조건이 수시로 변하는 임상적 환경에서 얻어지는 포탈영상들에 적용하여도 균일한 결과를 얻을 수 있다.
본 논문에서는 컬러 영상에서 색상과 에지 정보를 이용한 얼굴 영역 검출 알고리즘을 제안한다. 제안된 알고리즘은 YCbCr 색공간에서 Cb와 Cr성분을 이용하여 피부색 분할을 한 후에 형태학적 필터링과 레이블링을 통해 얼굴 후보 영역을 분리한다. 분리된 각 후보 영역에 대해 휘도 성분 Y에서 소벨 마스크의 수직 연산자를 적용한 후에 수평 투영을 통해 나타난 최대값을 눈의 위치로 검출해낸다. 비슷하게 얼굴의 지형적인 특징과 소벨 마스크의 수평 연산자를 적용하여 계산된 수평 투영의 최대값에 따라 턱 부분을 검출한다. 실험 결과, 기존의 연구와 검출율을 비슷하면서도 턱의 위치를 검출함으로써 목 부분이 얼굴 영역에 포함되는 것을 방지할 수 있음을 볼 수 있다.
본 논문에서는 복잡한 영상에서의 윤곽선 검출을 기존의 방법보다 더 명확하고 효율적으로 나타내기 위해서 K-means 군집화를 이용하였다. 제안하는 방법에는 세 가지 단계를 거친다. 첫 번째는 명암분포를 균일하게 하기 위하여 히스토그램 평활화를 사용한다. 두 번째는 거리에 기반을 둔 클러스터링 기법으로 기준점에서 가까운 곳의 데이터들을 하나의 군집으로 묶는 K-means 군집화를 사용하고 마지막으로 에지검출의 가장 대표적인 1차 미분 연산자인 소벨 마스크를 사용하여 윤곽선을 검출한다. 따라서 기존에 있던 윤곽선 검출보다 더 나은 결과로 명확하게 윤곽선을 검출 할 수 있음을 보인다.
본 논문에서는 형태학적 처리 방법과 8 방향 윤곽선 추적을 이용하여 손금을 추출하는 방법을 제안한다. YCbCr컬러 공간에서 Y:65~255, Cb:25~255, Cr:130~255에 해당되는 피부색 임계치를 이용하여 손 영역을 추출한다. 추출된 손 영역에서 내부 픽셀의 3:1 이상, 전체 영상의 2:1이상인 손의 형태학적 정보와 8 방향 윤곽선 추적 기법을 이용하여 잡음을 제거한다. 잡음이 제거된 손 영상에서 스트레칭 기법과 소벨 마스크를 이용하여 에지를 추출한다. 추출된 에지 영상에서 블록 이진화 기법을 이용하여 이진화한 후에 가로와 세로가 각각 10픽셀 이상이고 20픽셀 이하인 손금의 형태학적 정보를 이용하여 잡음 및 손의 윤곽선을 제외한 손금을 추출한다. 추출된 손금에서 Labeling 기법을 이용하여 개별 손금의 중요선을 추출한다. 핸드폰 카메라에서 획득한 손바닥 영상을 대상으로 실험한 결과, 제안된 방법이 손금 추출에 효율적인 것을 확인할 수 있었다.
본 논문은 온라인 얼굴 인식에서 전처리에 해당하는 얼굴 검출방법을 다룬다. 기존의 얼굴 검출 방법에서 에지 정보만을 이용한 얼굴 검출 방법과 컬러 정보를 이용한 얼굴 검출 방법의 단점을 상호 보완하기 위해 본 연구에서는 에지 정보와 컬러 정보를 결합한 얼굴 검출 방법 및 중심 영역 컬러 샘플링을 이용한 얼굴 검출방법을 개발하였다. 즉, 사람의 얼굴 영역이 비슷한 컬러를 가진 배경 영역과 결합(Merge)되는 것을 막기 위해 먼저 적응형 에지 검출 알고리즘을 수행하여 배경과 얼굴 영역을 각각의 고립 영역으로 분할한다. 제안된 적응형 소벨(Sobel) 에지 검출기는 배경 영역과 얼굴 영역의 경계에서 항상 에지가 발생할 수 있도록 에지가 많이 검출되고 입력 영상의 밝기 변화에 강인하다. 이로 인해 얼굴 영역이 하나의 영역이 아닌 여러 영역으로 분할되어 나타날 수 있으므로, 각 영역들의 컬러 정보를 이용해 병합한 후, 최종 얼굴 영역을 MBR(minimum bounding rectangle) 형태로 검출하였다. 이때 병합된 최종 얼굴 영역 후보가 너무 크거나 혹은 너무 작으면, 중심 영역 샘플링 방법을 이용해 다시 얼굴 영역을 검출한다. 총 2100장의 얼굴 영상 데이터베이스를 통해 실험한 결과 본 연구에서 제안한 방법을 사용해 96.3%의 높은 얼굴 영역 검출 성공률을 얻을 수 있었다.
본 논문에서는 입술 주위 영상만으로 독화를 위한 에지 파라미터를 추출하였고, 한국어 5모음 'ㅏ/ㅔ/ㅣ/ㅗ/ㅜ'를 인식하는데 효과적임을 보였다. 발화하는 입주위의 이미지를 $5{\times}5$로 나누고, 각 영역에 소벨 연산자를 적용하여 디지털 에지 수를 구한 후, 이 값들의 관찰 오차를 정규화를 통하여 수정하고, 정규화 된 값을 파라미터로 사용하였다. 파라미터의 견인성을 확인하기 위하여, 자동 독화 시스템을 구축하였다. 인식 실험에 정상인 50명이 동원되었고, 10명의 이미지로 분석하고, 다른 40명의 이미지로 인식 실험을 하였다. 500개의 데이터를 분석하고, 이 분석을 바탕으로 신경망 시스템을 구축하였으며, 400개의 데이터로 인식 실험하였다. 신경망 시스템의 최고 인식 결과는 91.1%였다.
본 논문에서는 비월 주사 영상을 순차 주사 영상으로 보간 하는데 사용되는 효율적인 디인터레이싱 알고리즘을 제안한다. 먼저 보간할 화소의 주변 화소들이 갖는 공간적 방향성의 경향을 구하고 구해진 경향에 맞게 소벨 연산을 적응적으로 적용하여 기울기 벡터를 구함으로써 정교한 에지의 방향을 구한다. 이렇게 구해진 정교한 에지 방향에 맞게 보간을 수행하므로 좀 더 선명하고 정확한 영상을 얻을 수 있다. 제안하는 알고리즘은 기존의 알고리즘에 비해 복잡도를 줄이는 동시에 정확한 에지 방향을 추출할 수 있다. 여러 가지 정지 영상에 대한 실험 결과는 제안하는 알고리즘의 객관적, 주관적 우수함을 증명한다.
본 논문에서는 주차 단속의 자동화를 위해 입력된 차량 영상으로부터 번호판 영역의 복합 색상 정보와 명암 벡터를 이용하여 번호판 영역을 추출하는 알고리즘을 제안한다. 일반적으로 명암도 영상에서는 번호판 영역의 숫자나 문자와 배경간의 명암도 변화는 뚜렷하게 나타나고, 다른 영역에 비하여 명암벡터의 밀집도가 높다는 특징을 가지고 있다. 이러한 특징을 이용하여, 번호판 영상의 하측 라인부터 명암 벡터의 부호 변화가 임계치 이상으로 나타나고, 자가용 또는 영업용 번호판 색상이 일정 수준으로 검출되는 구간을 번호판 영역으로 검출하고 이를 기준으로 대략 박스를 설정한다. 정교한 번호판 영역은 수직 소벨 에지 영상의 프로젝션으로 추출한다. 제안한 알고리즘을 평가하기 위하여, 다양한 시간과 장소에서 촬영되고 차량 주변의 복잡한 배경이 충분히 포함된 총 100장의 주차 단속 영상을 사용하였다. 실험 결과, 명암벡터와 색상정보를 함께 사용한 제안한 방법 이 명암벡터만을 사용한 방법에 비해 약 10% 향상된 97%의 번호판 추출률을 보였으며, 차량 종류의 자동 구분도 가능하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.