본 논문에서는 거품 입자를 활용하여 시뮬레이션 장면에 맞는 소리를 효율적으로 합성할 수 있는 기법을 제안한다. 물리 기반 시뮬레이션 환경에서 소리를 표현하는 대표적인 방법은 생성과 합성이다. 사운드 생성의 경우 시뮬레이션 장면마다 물리 기반 접근법을 사용하여 소리를 생성할 수 있는데 계산 시간과 재질 표현의 어려움으로 다양한 시뮬레이션 장면에 대한 소리를 만들어 내기에는 쉽지 않다. 사운드 합성의 경우 소리 데이터를 미리 구축해야 하는 사전 준비가 필요하지만, 한 번 구축하면 비슷한 장면에서는 같은 소리 데이터를 활용할 수 있는 점이 있다. 따라서 본 논문에서는 거품 시뮬레이션의 소리 합성을 위해 소리 데이터를 구축하고 거품 입자의 효율적인 군집화를 통해 계산 시간을 줄이면서 소리의 사실감은 개선할 수 있는 사운드 합성 기법을 제안한다.
소리 데이터 분류는 단순 소리를 통한 분류, 감정 인식등 다양한 연구가 진행중이다. 심층 신경망에서 데이터의 부족과 과적합 문제를 개선하는 방법으로 데이터 증강은 중요하다. 본 논문에서는 3가지의 소리데이터(UrbanSound8K, RAVDESS, IRMAS)를 사용하였으며, 소리데이터는 멜 스펙트로그램을 통한 변환과정을 거쳐 네트워크 망에 입력된다. 입력된 신호는 다양한 네크워크 신경망(Bidirection LSTM, Bidirection LSTM Attention, Multi-Head Attention, CNN)을 통해 학습되어지며, 각각의 네트워크 신경망에서 데이터 증강 전후의 분류 정확도를 확인 하였다. 다양한 데이터셋과 다양한 네트워크 망에서의 데이터 증강 방법의 결과 비교를 통한 통찰을 얻을수 있을 것이다.
멀티 채널 오디오 시스템 및 입체음향 기술이 대중화 되면서 오디오 데이터의 저장 및 재생 방법에 있어서 실감 현장 음향을 고려하는 것이 일반화되었다. 이 논문에서는 구조화 오디오 데이터 형식 [1]을 이용해 불필요한 데이터 공간을 제거하고, 거기에 입체 음향 기술을 적용시켜 효과적인 오디오 데이터 처리 방법을 제시하고자 한다. 우리는 구조화 오디오 데이터 형식을 개념적으로 명백히 하기 위해 재사용 가능한 "소리 객체"를 사용하였다. 소리 객체는 오디오 데이터를 처리하기위한 녹음된 소리 샘플의 기본 단위로서 소리객체에 3D 위치 속성이나, 필터 속성을 지정해 소리를 변화 시킬 수 있다.
최근 디지털 오디오 매체의 증가로 인해 소리 데이터의 규모와 다양성이 크게 확대되었으며, 이로 인해 디지털 포렌식 과정에서 소리 데이터 분석의 중요도가 증가하였다. 하지만 소리 데이터 분석에 대한 표준화된 절차나 가이드 라인이 부족하여 분석 결과의 일관성과 신뢰성에 문제가 발생하고 있다. 디지털 환경은 다양한 오디오 형식과 녹음 조건을 포함하고 있지만, 현재 오디오 포렌식 방법론은 이러한 다양성을 충분히 반영하지 못하고있다. 이에 본 연구에서는 모든 상황에서 효과적인 분석을 수행할 수 있도록 Life-Cycle 기반 소리 데이터 요소기술을 식별하여 소리 데이터 분석의 전반적인 가이드라인을 제시하였다. 이와 더불어, 식별한 요소 기술을 소리 데이터를 대상으로 하는 디지털 포렌식 기술 개발에 활용하기 위해 분석을 진행하였다. 본 연구에서 제시한 Life-Cycle별 소리 데이터 요소 기술 식별 체계의 효과성을 입증하기 위하여 소리 데이터 기반으로 응급상황을 검색할 수 있는 기술을 개발하는 과정에 대한 사례 연구를 제시하였다. 해당 사례 연구를 통해 소리 데이터를 대상으로 하는 디지털 포렌식 기술 개발 과정에서 Life-Cycle 기반으로 식별한 요소 기술이 데이터 분석의 질과 일관성을 보장하게 하고 효율적인 소리 데이터 분석을 가능하게 함을 확인하였다.
인공지능 기술을 활용하여 동물 소리를 분석하고 그 종을 구별하는 기술은 지역의 야생동물 현황 파악이나 생태계 조사 등에 효과적으로 사용될 수 있다. 인공지능 기술을 활용하기 위해서는 많은 동물 소리 샘플이 필요하지만, 현재 그러한 데이터는 녹음 환경이 고도화되어 있는 상용 DB나 전문가 DB 형태로 존재한다. 이러한 데이터만을 학습한 인공지능의 경우 실제 환경에서 녹음된 동물 소리를 식별하는 데 많은 어려움이 예상된다. 따라서 본 논문에서는 다양한 동물 소리를 수집하기 위해 동물 관련 전문가나 일반 사용자 모두 자유롭게 사용할 수 있는 동물 울음소리 수집과 분류를 위한 오픈 플랫폼을 제안한다. 플랫폼에 업로드된 소리 파일은 인공지능의 학습 데이터로 사용하며, 이 인공지능은 사용자에게 소리 파일을 분석한 결과로 해당 동물종과 그에 대한 다양한 생태정보를 제공하고 부가적으로 지역별 동물 통계 및 소리 파일에서의 소리 구간 추출, 소리 파일 공유 등 다양한 기능을 제공한다.
4차 산업혁명이 도래하면서 정보 통신 기술 및 융합 기술의 발전에 힘입어 소리 데이터를 이용한 연구가 활발하게 진행되고 있다. 소리 데이터를 이용한 학술적 프로토타입 연구들을 실제 환경에서 운용하기 위해서는 소리 취득 시 발생하는 다양한 잡음 환경에서도 원시 데이터(raw data)에 근접한 정보를 취득할 수 있는 시스템의 강인함이 보장되어야 한다. 본 논문에서는 SEGAN(Speech Enhancement Generative Adversarial Network) 모델을 활용하여, 전처리 및 후처리 과정이 필요 없이 원시 데이터를 대상으로 하는 end-to-end 방식의 소리 음질 향상 시스템을 제안한다. 제안하는 시스템은, 축산업 분야의 돼지 호흡기 질병 소리 데이터를 이용하여 실험하였으며, 여러 가지 잡음 상황(인위적인 잡음, 실제 환경 잡음)에서 소리 음질이 개선됨을 실험적으로 검증하였다.
최근 반려동물을 키우는 가구 수의 증가와 함께, 반려묘에 대한 관심도 상당히 증가하고 있다. 특히 반려인은 반려묘와의 원활한 의사소통과 교감을 바라지만 반려묘의 세세한 감정 상태를 24시간 내내 파악하는 것은 어려운 일이다. 본 논문에서는 반려묘의 울음소리에 많은 감정 및 상태 정보가 담겨있는 것에 착안하여, 반려묘의 울음소리를 기반으로 감정을 분류하는 시스템을 제안한다. 제안된 시스템은 먼저, 이미 수집된 소리 데이터를 데이터 증폭 방법론을 이용하여 데이터를 확장 한 후, 해당 소리들의 멜 스펙트로그램 정보를 추출한다. 이를 시계열 정보 처리에 효과적인 LSTM에 적용하여 반려묘의 감정 상황을 식별할 수 있도록 학습을 수행한다. 실험 결과, 반려묘의 감정 상태 분류의 가능성을 확인하였다.
효과적인 동물 생태계 분석을 위해서는 동물 서식 현황을 자동으로 파악할 수 있는 동물 관제 기술이 중요하다. 특히 울음소리로 종을 판별하는 동물 소리 분류 기술은 영상을 통한 판별이 어려운 환경에서 큰 주목을 받고 있다. 기존 연구들은 단일 딥러닝 모델을 사용하여 동물 소리를 분류하였으나, 야외 환경에서 수집된 동물 소리는 많은 배경 잡음을 포함하여 단일 모델의 판별력을 악화시키며, 종에 따른 데이터 불균형으로 인해 모델의 편향된 학습을 야기한다. 이에, 본 논문에서는 클래스의 데이터 수를 고려하여 페널티를 부여하는 Focal Loss를 사용한 여러 분류 모델의 예측결과를 앙상블을 통해 결합하여 잡음이 많은 동물 소리를 효과적으로 분류할 수 있는 기법을 제안한다. 공개 데이터 셋을 사용한 실험에서, 제안된 기법은 단일 모델의 평균 성능에 비해 Recall 기준으로 최대 22.6%의 성능 개선을 달성하였다.
센서 및 정보 통신 기술의 발전은 산업 현장에서 취득한 정보를 기반으로 다양한 연구를 수행할 수 있는 토대가 되었다. 본 연구에서는 철도의 진로 방향을 전환하는 선로 전환기 주변에 설치한 소리 센서에서 수집한 소리를 기반으로 선로 전환기의 이상 상황을 탐지하고자 한다. 이와 같은 소리 데이터 기반의 이상 상황 탐지 시스템을 실제 산업 현장에서 성공적으로 운용되기 위해서는 소리 취득 시 발생하는 다양한 잡음 환경에서도 이상 상황을 식별할 수 있는 강인함이 보장되어야 한다. 본 논문에서는 소리 음질을 향상시키기 위하여 SEGAN(Speech Enhancement Generative Adversarial Network)을 활용하며, CNN(Convolutional Neural Network)을 기반으로 선로 전환기의 이상 상황을 식별하는 시스템을 제안한다. 수집된 소리 데이터를 기반으로 제안한 시스템을 실험적으로 검증한 바 잡음에 강인한 성능을 확인하였다.
본 논문에서는 물리기반 옷감 시뮬레이션에 적합한 소리를 효율적으로 생성하기 위한 데이터 기반 합성 기법을 제안한다. 시뮬레이션에서 소리를 표현하는 방법은 크게 생성과 합성이 있지만, 합성은 실시간 애플리케이션에서 활용이 가능하기 때문에 인터랙티브한 환경에서 자주 활용되고 있다. 하지만, 데이터에 의존하기 때문에 원하는 장면에 부합하는 사운드를 합성하기는 어려우며, 기존 방법은 한 방향으로만 사운드 데이터를 검색하기 때문에 불연속으로 인한 끊김 현상이 발생한다. 본 논문에서는 양방향 사운드 합성 기법을 제시하며, 이를 통해 불연속적으로 합성되는 사운드 결과를 효율적으로 개선될 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.