• Title/Summary/Keyword: 소각장애쉬

Search Result 3, Processing Time 0.021 seconds

Mockup Test of the High Volume Blast Furnace Slag Concrete Using Recycled Aggregates and Incinerator Ash (순환골재 및 소각장 애시를 자극제로 사용한 고로슬래그 미분말 다량치환 콘크리트의 Mock-up 성능평가)

  • Kim, Young-Hee;Kwak, Yong-Jin;Kim, Jun-Ho;Lee, Hyang-Jae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.19-21
    • /
    • 2012
  • This paper was to investigate the effect of incinerator ash on engineering properties of the high volume blast furnace slag concrete through Mock-up test. Test results revealed that the use of recycled aggregates resulted in increase of slump compared with the OPC concrete. But, the use of recycled aggregates did not affect the results of air contents and chloride contents. The use of recycled aggregates showed shortening of setting time of high volume blast furnace slag concrete. When the recycled aggregate was used, delay in strength development at early age happened with high volume blast furnace slag concrete compared with that of OPC concrete.

  • PDF

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).

Recycling of the Bottom Ash, Sourced from the Local MSW (Municipal Solid Waste) Incinerators, as a Fine Sand for Concrete (소각장(燒却場)에서 발생되는 바닥재의 콘크리트용 잔골재(骨材)로서의 재활용(再活用))

  • Lim, Nam-Woong
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.40-47
    • /
    • 2007
  • This paper described recycling of the bottom ash, sourced from the local incinerators as a fine sand for concrete. 10% bottom ash was substituted for the ordinary beach sand in the mortar(on a weigh basis), in conjunction with the pozzolznic diatomite. The specimens were tested according to KS L 5105 and analysed by TCLP(Toxic Chemical Leaching Procedure). The results showed that the hazardous heavy metals in the bottom ash are within the maximum permissible limit of TCLP. The compressive strength of the mortar with 10% bottom ash was highly improved, compared to the control mortar when the pozzolanic diatomite was used. It revealed that the hazardous heavy metals of the mortar with 10% bottom ash were leached within the maximum permissible limit of TCLP. It was concluded that the bottom ash can be reused as a fine sand for concrete when the pozzolanic diatomite was used as a stabilizer.