• Title/Summary/Keyword: 셀룰로오스 섬유

Search Result 192, Processing Time 0.029 seconds

Analysis of Migration Properties and Color Fastness of Disperse Dyes on Acetate, Tri-Acetate, PET and Mixture Fabrics (Acetate, Tri-Acetate, PET 및 복합소재에 대한 염색성 및 물성분석)

  • Kim, Gyeong-Mi;Woo, Jong-Hyeong;Chung, Yean-Kyu
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.51-51
    • /
    • 2011
  • Acetate 섬유는 고감성 제품의 대표적 핵심소재로서 실크와 같은 우아한 광택과 청량감을 주어 고가의 의류제품으로 사용되지만 편직 및 염색가공 공정이 까다롭고 비교적 저분자량의 분산염료로 염색되어 내열성, 염색견뢰도 및 물에 대한 형태안정성이 떨어진다. 특히, Acetate 편직물은 이태리나 일본 등 섬유선진국에서도 제조가 까다로운 기술적 난이도가 매우 높은 제품군이다. 반면 Tri-Acetate는 Acetate의 장점을 가지면서 내열성, 내세탁성, 원상회복력(resilience)등이 우수하여 기존 Acetate 시장의 고급제품 용도로의 전개가 가능할 뿐만 아니라 PET 등의 물성 및 형태가 다른 복수의 소재성분을 직물 사이에 공존시킴으로써 새로운 태, 기능, 외관, 광택의 부여가 가능하며 이를 활용한 차별화된 고부가가치 시장의 창출이 기대된다. Acetate와 Tri-Acetate 모두 셀룰로오스의 친수기가 아세틸화된 구조를 가지는 소수성 섬유로 분자구조가 치밀하여 분산염료로 염색된다. 그러나 일반적으로 Acetate 섬유의 경우 Acetate용 일반분산염료를 사용하여 저온상압염색을 하는 반면, Tri-Acetate의 경우 고온고압 분산염료를 사용하여 고온고압염색을 한다. PET와 Tri-Acetate 복합소재의 경우, 두 소재의 염색거동이 비슷하여 고온고압 분산염료로 염색이 가능하지만 T/P 복합소재에 상응하는 염색을 위해서는 복합소재를 구성하는 각각의 섬유소재에 적합한 염료의 선정 및 염색법의 개발이 필요하다. 본 연구에서는 Tri-Acetate 및 T/P 복합소재에 대한 염색최적조건을 규명하고자 염색온도별, 2종의 분산염료의 농도별 염색성, 염색시료의 인열강도 및 견뢰도를 측정하여 적정조건을 도출하였다.

  • PDF

X-ray and Electron Diffraction Study of Cellulose Crystal Structures (X선 및 전자선회절법에 의한 천연셀룰로오스의 결정구조 해석)

  • Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.72-79
    • /
    • 1996
  • Cellulose I에서 Cellulose II로의 결정변태기구를 X선 및 전자선 회절법과 현미경적 방법을 이용하여 구명하였다. X선 회절 결과, Na-cellulose I을 고온에서 수세할 경우 Cellulose I과 Cellulose II의 혼합형 회절도가, 저온에서 수세할 경우 Na-cellulose IV의 회절도가 얻어졌다. 전자선회절 결과, 고온수세의 시료는 Cellulose I과 Cellulose II의 혼합형이 저온수세의 시료는 Cellulose II의 회절도가 얻어졌다. 또한 고온수세 시료의 전자선회절도로부터 섬유벽의 내측부가 외측부보다 재생 Cellulose I의 양이 많은 것이 확인되었다. 따라서 알칼리 팽윤시 섬유벽내에는 불완전한 팽윤이 발생하는데 그 정도는 내측부가 더욱 심한 것으로 생각된다. 이때 형성되는 불완전한 Na-cellulose I 은 고온 수세의 경우는 탈수에 의해 Cellulose I로, 저온수세의 경우는 수화에 의해 Cellulose II로 변태되지만 완전히 팽윤된 Na-cellulose I은 Cellulose I로 재생될 수 없는 것으로 생각된다. 현미경적 실험결과, mercerization과정에서 cellulose 분자쇄의 packing이나 conformation의 변화와 관련하여 microfibril 의 흐트러짐은 발생하지 않는 것으로 생각되었다.

  • PDF

The Improvement of Wet Strength Properties of Sheet by N-Chlorocarbamoylethylation (N-chlorocarbamoylethyl화에 의한 sheet의 습윤강도 향상효과)

  • Jeong, Myung-Joon;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.63-72
    • /
    • 1999
  • For the purpose of improving the wet strength properties of paper, cellulosic fibers were modified by the processes of carbarmoylethylation and N-chlorocarbamoylethylation. Carbamoylethylated cellulose was prepared by the reaction of acrylamide with cellulosic fibers under the alkali catalyst, and N-chlorocarbamoylethylated cellulose was prepared by the addition of sodium hypochlorite into the carbamoylethylated cellulose. In carbamoylethylation reaction, the conditions of NaOH concentration, temperature and acrylamide addition rate were considered to be important factors. An initial reactivity and degree of substitution(DS) in carbamoylethylation of cellulosic fibers were effective according to increasing the addition rates of alkali, acrylamide and the temperature condition of $40^{\circ}C$. The effective wet strength properties by N-chlorocarbamoylethylation of cellulosic fibers were indicated under the conditions of DS 0.06. The wet strength of sheet was improved to 85% at the 100% basis of dry strength. From the photograph of scanning electron microscopy, fiber cuttings on the edge of sheet sample used in tensile strength testing were found in the N-chlorocarbamoylethylated sheet, due to the improvement of fiber bonding strength. The hypochlorite treatment was effective in the recycling of N-chlorocarbamoylethylated sheet, and was reduced the wet strength of sheet to be able to reslush.

  • PDF

Field Case Study of Mechanized Form Roads Pavement Construction using Cellulose Fiber Reinforced Concrete (셀룰로오스 섬유보강 콘크리트를 사용한 기계화경작로 확·포장공사의 현장사례 연구)

  • Park, Jong Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.47-56
    • /
    • 2015
  • At the present, the mechanized form roads pavement was constructed with plain concrete. Mostly, it was used by welded wire mesh for preventing crack. Cellulose fibers for the reinforcement of concrete offer relatively high levels of elastic modulus, fiber count (per unit weight), specific surface, and bond strength to cement-based materials. The construction of concrete pavement confirmed that cellulose fiber reinforced concrete was applicable to mechanized form roads pavement. In the study, cellulose fibers were used here at 0.08 % volume fraction, which is equivalent to a fiber content of $1.2kg/m^3$. Cellulose fiber reinforced concrete were compared with plain concrete. Field test results indicated that cellulose fiber reinforced concrete showed slightly to increase of 28 days compressive strength and improved the initial strength. it tended to increase of splitting tensile strength. Test results showed that the slump and air content tend to decreased. but, the variation of air contends is very little. Also, construction cost of cellulose fiber reinforced concrete is less than about 25.7 % the case of welded wire mesh previously used. Therefore, The cost reduction is expected to be possible in construction site by mechanized form roads pavement.

Changes in Physical Properties of Paper by Solvent-Bonding between Cellulose Fibers Using Aqueous Solution of N-Methylmorpholine N-Oxide (N-Methylmorpholine N-Oxide 수용액을 이용한 셀룰로오스 섬유들간의 용제접착에 의한 종이의 물성 변화)

  • 이양헌;박찬헌;이현진;이선희
    • Textile Coloration and Finishing
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 1999
  • To examine the increase of paper strength by solvent-bonding using N-methylmorpholine N-oxide (NMMO), a paper was treated with aqueous solutions of NMMO, concentrated at $90^\circ{C}$ for selected periods of time, and pressed for 5 seconds followed by washing and drying. The effect of the increasing NMMO concentration on bonding state and some important properties of samples were mainly investigated. With increasing concentration of NMMO, the degree of bonding between fibers was increased, the fiber cross-sectional shape was changed from 'thin ribbonlike' to 'round rodlike' by swelling with solvent, and the longitudinal waves (crimp) were introduced to fibers, hence the shrinkage, weight per unit area, and thickness of paper were increased. Consequently, the tensile strength and elongation, under standard and wet conditions, and the stiffness were increased, and the water absorption was decreased generally with increasing concentration of NMMO. The moisture regain of treated samples was lower than that of the untreated sample, because of the reduction of space between fibers. But the moisture regain was increased a little with increasing concentration of NMMO due to the fiber swelling with NMMO followed by structural relaxation.

  • PDF

Effect of propyl gallate on the properties of regenerated cellulose fiber spun from NMMO dope system (Propyl gallate가 NMMO계에서 제조된 셀룰로오스 섬유의 물성에 미치는 영향)

  • Lee, Soo;Lee, Sang-Won;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • Regenerated cellulose fibers were prepared from three pulps containing different degree of polymerization(DP) and $\alpha$-cellulose contents by dry-jet wet spinning technique with cellulose dope in N-methylmorpholin N-oxide (NMMO). The effect of antioxidant, n-propyl gallate (PG) on the properties of different regenerated celluloses was studied using X-ray diffraction, copper number calculation, and viscometry. The degradaqtion of regenerated cellulose from pulp containing higher DP and lower $\alpha$-cellulose content was occurred more seriously. The tensile strength and initial modulus of regenerated cellulose fiber obtained from NMMO dope with PG were higher than those of fiber obtained from NMMO dope without PG. All fibers showed the round shape cross section and typical cellulose II crystalline structure.

Electrospinning of Asiaticoside/2-Hydroxypropyl-β-cyclodextrin Inclusion Complex-loaded Cellulose Acetate Fiber Mats: Release Characteristics and Potential for Use as Wound Dressing (Asiaticoside/2-Hydroxypropyl-β-cyclodextrin 포접화합물 함유 셀룰로오스 아세테이트 섬유 매트의 전기방사: 창상피복제로서 사용가능성과 방출특성)

  • Panichpakdee, Jate;Pavasant, Prasit;Supaphol, Pitt
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.338-350
    • /
    • 2014
  • Cellulose acetate (CA) fiber mats containing inclusion complexes of asiaticoside (AC) in 2-hydroxypropyl-${\beta}$-cyclodextrin ($HP{\beta}CD$) for potential usage as wound dressings were developed. The AC/$HP{\beta}CD$ complex-loaded CA fibers at various $HP{\beta}CD$ to AC molar ratios of 0.5, 1, and 2 were prepared in 90:10 v/v mixture of 80% (v/v) acetic acid and N,N-dimethylacetamide (DMAc) via electrospinning. The maximum released amounts of AC depended on the $HP{\beta}CD$ content and were much greater than those released from the AC-loaded CA fiber mat. In the in vitro study, indirect cytotoxic evaluation with human dermal fibroblasts (HDFa) showed that these materials released no substances in the levels that were harmful to the cells and the cells appeared to attach and proliferate well on these substrates. However, only the CA fiber mats containing AC/$HP{\beta}CD$ complexes at the $HP{\beta}CD$ to AC molar ratio of 0.5 was effective in upregulating the production of collagen of the cultured cells.

Development of Retort Packaging Material Using Cellulose Nano Fiber (셀룰로오스 나노 파이버를 적용한 레토르트 포장재 개발)

  • Lee, Jinhee;Choi, Jeongrak;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • As modern society develops, it becomes very complex and diverse, and interests in the convenience of life and the natural environment are gradually increasing. Products used in our daily life are also changing according to the needs of consumers, and food packaging is one of them. In particular, retort packaging materials have been used for the purpose of long-term preservation of contents, but the appearance of products suitable for recent environmental issues has been somewhat delayed. Therefore, in order to develop eco-friendly and human-friendly products by replacing the metals used in the existing retort packaging materials, the possibility of substitution was examined using cellulose nanofibers, a natural material. As a result, it can be seen that all functions can be replaced according to the existing long-term storage characteristics for retort packaging films. In particular, not only oxygen permeability and water vapor permeability, which are one of the most important factors, but also heat resistance, which is heating durability, is evaluated as applicable to commercialization compared to products using metals currently in use.

Effect of Modification PP on the Physical Properties and CNF Dispersion of PP Powder/CNF 1 wt% Slurry Composite (PP 분말/CNF 1 wt% 슬러리 복합체의 CNF 분산 및 물성에 대한 개질 PP의 영향)

  • Kim, Jun Seok;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.284-288
    • /
    • 2022
  • Polypropylene (PP) powder/cellulose nanofibers (CNF) 1 wt% slurry composites were prepared by filtering their suspension under reduced pressure and dried them in an oven followed by the use of a twin screw extruder. PP modified with side branches and polar groups was used. The side branches and polar groups were introduced into PP by using divinylbenzene and maleic anhydride (MAH), respectively. As a result of examining the dispersibility of CNF and the physical properties of the composite, it was confirmed that the composite prepared from PP powder/CNF 1 wt% slurry showed equal or higher levels in tensile and flexural strength as compared with those using the composite prepared from CNF powder.

Spatting and Fire Enduring Properties of High Strength RC Column Subjected to Axial Load Depending on Fiber Contents (중심 축하중을 받는 고강도 RC기둥의 섬유 혼입량에 따른 폭열 및 내화 성상)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Jae-Sam;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.83-90
    • /
    • 2006
  • This paper investigates experimentally the fire resistance performance and spatting resistance of high performance reinforced concrete column member subjected to fire containing polypropylene fiber(PP fiber) and cellulose fiber(CL fiber). An increase in PP fiber and CL fiber contents, respectively resulted in a reduction of fluidity due to fiber ball effect. Air content is constant with m increase in fiber content. Compressive strength reached beyond 50 MPa. Based on fire resistance test, severe failure occurred with control concrete specimen, which caused exposure of reinforcing bar. No spall occurred with specimen containing PP fiber. This is due to the discharge of internal vapour pressure. Use of CL fiber superior to control concrete in the side of spatting resistance, localized failure at comer of specimen was observed. Corner of specimen had deeper neutralization than surface of specimen. Specimen containing PP fiber had the least damaged area due to spatting. Neutralization depth ranged between 6 and 8 mm Residual compressive strength of specimen containing PP fiber maintained 40%, which is larger than control concrete with 20% of residual strength. Specimen containing CL fiber had 25% or residual strength.