• Title/Summary/Keyword: 셀룰로오스 섬유

Search Result 192, Processing Time 0.025 seconds

Development of Antimicrobial and Deodorizing Cellulose Fiber (항균방취 셀룰로오스섬유 제조에 관한 연구)

  • 홍영근
    • Textile Coloration and Finishing
    • /
    • v.10 no.1
    • /
    • pp.38-42
    • /
    • 1998
  • Both cellulose and chitin together were dissolved in DMAc/LiCl and these solutions were extruded into coagulant of $DMAc/H_2O$. Fibers thus obtained were treated in NaOH aqueous solution. Results showed that the fiber surface contains celluose and chitosan. This means that these fibers treated are composed of three components, ie, cellulose, chitin, and chitosan. These fiber showed secure antibacterial and mechanical properties.

  • PDF

Mechanical Properties of Specialty Cellulose Fiber Reinforced Concrete (특수 가공된 셀룰로오스섬유보강 콘크리트의 역학적 특성)

  • 원종필;박찬기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.307-312
    • /
    • 1999
  • This study has been performed to obtain the mechanical properties of specialty cellulose fiber reinforced concrete. Flexural test is proceeded by third-point loading method and the size of the test specimens is 15${\times}$15${\times}$55mm. The effect of differing volume fraction (0.08%, 0.1%, 0.15%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural strength.

  • PDF

Effects of Coagulants and Annealing on Properties of Regenerated Cellulose Fibers (재생셀룰로오스섬유 물성에 대한 응고액과 열처리의 효과)

  • Hong, Young Keun
    • Textile Coloration and Finishing
    • /
    • v.7 no.4
    • /
    • pp.54-60
    • /
    • 1995
  • Cellulose(cell)/dimethylacetamide(DMAc)/lithium chloride(LiCl) solutions were prepared and spun to fibers in coagulants. Then, obtained fibers were annealed in appropriate chemicals. The fibers from cell/DMAc/LiCl showed cell III morophology prior to annealing without differenciating the kind of coagulants. Morphology of crystallite, however, was affected by annealing. Annealed fibers at 17$0^{\circ}C$ showed cell IV morphology and had better mechanical properties than others.

  • PDF

Improving Dyeability of Safflower Yellow Colorants on Cellulose Fibers (홍화 황색소의 셀룰로오스 섬유에 대한 염착성 증진)

  • Shin, Youn-Sook;Cho, A-Rang;Yoo, Dong-Il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1754-1760
    • /
    • 2007
  • To improve poor dye uptake of safflower yellow colorants, cellulose fibers were pretreated with chitosan. The effect of chitosan pretreatment on the dyeability of safflower yellow colorants to cotton, ramie, and rayon was investigated in terms of dye uptake, color, and colorfastness. Irrespective of fiber types, dye uptake increased continuously with increase in chitosan concentration. Chitosan pretreatment improved dye uptake up to 5.6 times for cotton, 7.2 times for ramie, and 3.7 times for rayon. For cotton and ramie, the shade of dyed fabric changed YR color to Y color with increase in chitosan concentration. Dyed rayon fabrics showed Y color irrespective of chitosan concentration. Shades got darker and deeper with increasing chitosan concentration. Shades of chitosan pretreated fabrics were shifted differently depending on dyeing temperature within same fabrics. In common, the color of all dyed fabrics changed to YR at 50 and $70^{\circ}C$ while Y color at 30 and $90^{\circ}C$. V and C value decreased with increase in dyeing temperature and resulted in darker and duller color, in general. Light fastness was fair while washing fastness was poor. It was confirmed that ultrasonic dyeing method enhanced dye uptake more than 30% for cotton and ramie fabrics compared to the conventional automatic machine dyeing method. However, no difference in dye uptake between two dyeing methods was found for rayon.

Anatomical Characteristics of Three Korean Bamboo Species (국내산 대나무 3종의 해부학적 특성)

  • Jeon, Woo-Seok;Kim, Yun-Ki;Lee, Ju-Ah;Kim, Ah-Ran;Darsan, Byantara;Chung, Woo-Yang;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • Bamboo is one of the major biomass resources in the world. To obtain valuable information for effective use of bamboo resources in Korea, the anatomical characteristics of the commercial Korean bamboo species (Phyllostachys pubescens, Phyllostachys nigra, and Phyllostachys bambusoides) were analyzed. The structures in bamboo culm were observed by optical and scanning electron microscopy. Also the crystalline properties as relative crystallinity and crystallite width were measured by an X-ray diffraction method. The three Korean bamboo species had the vascular bundle type I with tylosoid in intercellular space. In the outer part of culm, vascular bundles showed denser spacing than inner part. The fiber length in outer part samples of the three bamboo species showed longer than inner part samples. Furthermore, the fiber length showed a significant difference between inner part and outer part in three bamboo species, showing the longest fiber length in Phyllostachys bambusoides. Phyllostachys pubescens showed the greatest diameter in vessel and parenchyma on cross section. Parenchyma cells in Phyllostachys pubescens and Phyllostachys bambusoides showed similar length and width in both radial and tangential sections. The relative crystallinity and crystallite width in outer part samples of the three bamboo species showed higher values than those in inner part samples, with the greatest values from Phyllostachys bambusoides.

Fundamental Study for Extension of Application of Recycled Concrete Aggregate: Spun High Strength Concrete (순환골재의 사용성 확대를 위한 연구: 원심력콘크리트로의 적용)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Hyun-Jung;Kim, Taeg-Wang;Lee, Man-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.103-112
    • /
    • 2006
  • Along with recent improvement of recycling technique, the quality of the recycled concrete aggregate have become very competitive to the natural concrete aggregate. Therefore, a practical use of the recycled concrete aggregate may be possible for structural members. Majority studies about the recycled concrete aggregate was emphasized a limitation of fundamental study concerned with a strength characteristics and durability of the recycled aggregate concrete, there is use for the structural members. Therefore, for the extension of application of recycled concrete aggregate, this investigation verifies the strength characteristics recycled concrete aggregate of the spun-concrete products with various coarse and fine recycled aggregate replacement ratio(coarse recycled aggregate: 0%, 20%, 40%, 60%, 100%; fine recycled aggregate: 0%, 30%, 60%, 100%) and with addition of cellulose fibers(0%, 0.01%, 0.03%, 0.05%, 0.08%). From the test results, The strength of spun concrete used with recycled aggregate [NR specimen], was measured as 72MPa, was found to be very approximately to the strength of spun concrete used with the natural aggregate(NN specimen), was measured as 74MPa, when only fine aggregate was replaced with the recycled. Therefore, the fine recycled concrete aggregate can be successfully used in the spun high strength concrete product. The compressive strength of all specimens used the specialty cellulose fiber were measured as about 70M Pa, however, the increasement of the specialty cellulose fiber content is showed to decrease compressive strength of spun concrete. Therefore, it is anticipated that the specialty cellulose fiber can be applied to the various spun concrete products.

  • PDF

Mechanical Properties of Cellulose-filled Epoxy Hybrid Composites Reinforced with Alkali-treated Hemp Fiber (염기 처리 대마 섬유로 강화된 셀룰로오스 충전 에폭시 하이브리드 복합재의 기계적 물성)

  • Anand, P.;Anbumalar, V.
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • There is a limit for deforestation in order to keep the environmental cycle undisturbed. The heart of the paper is to replace the wood to a maximum extent to obtain a sustainable environment. This research aims at new natural composites in which treated hemp fiber used as reinforcement, synthetic cellulose used as particulate to improve the adhesion between matrix - fiber interface and Epoxy LY556 acted as matrix fabricated by hand layup technique. The density, water absorption, tensile properties, impact strength, hardness, flexural properties and compressive properties have been evaluated under ASTM standards and compare the results with existing materials such as wood, aluminium, etc., The composite hemp fiber reinforced polymer (HFRP) could be exploited as an effective replacement for wood and it would be suitable for automotive applications by comparing results.

Fabrication of the micro-mold and nanofiber using cellulose solution (셀룰로오스를 이용한 마이크로 몰드 및 나노섬유 제작)

  • Cho, Ki-Youn;Lim, Hyun-Kyu;Kang, Kwang-Sun;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.69-72
    • /
    • 2007
  • Cellulose is a beneficial material that has low cost, lightweight, high compatibility and biodegradability. Recently electroactive paper (EAPap) on cellulose base was discovered as a smart material and actuator through ion migration and piezoelectric effect. Furthermore cellulose has a potentiality to apply the display material, because of its high reflectivity, flexibility and high transmittance. The various shapes and height patterns of the Cellulose acetate (CA) solution, such as circle and honeycomb patterns, were fabricated and observed by field emission scanning electron microscope (FESEM, S4300 Hitachi). The resulting pattern showed uniform size in the large area without defect. After stretching the CA film with saponification process in the sodium methoxide in methanol solution, Most of the compositions become one directional ordered nanofibers below 50nm.

  • PDF

Preparation and Characterization of Poly(lactic acid) Nanocomposites Reinforced with Lignin-containing Cellulose Nanofibrils (리그닌 함유 셀룰로오스 나노섬유로 강화된 폴리락틴산 나노복합재의 제조 및 분석)

  • Sun, Haibo;Wang, Xuan;Zhang, Liping
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.464-470
    • /
    • 2014
  • A chemo-mechanical method was used to prepare lignin-containing cellulose nanofibrils(L-CNF) from unbleached woodpulps dispersed uniformly in an organic solvent. L-CNF/PLA composites were obtained by solvent casting method. The effects of L-CNF concentration on the composite performances were characterized by tensile test machine, contact angle machine, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The tensile test results indicated that the tensile strength and elongation-at-break increased by 50.6% and 31.8% compared with pure PLA. The contact angle of PLA composites decreased from $79.3^{\circ}$ to $68.9^{\circ}$. The FTIR analysis successfully showed that L-CNF had formed intermolecular hydrogen bonding with PLA matrix.

Alkali-Swollen Structures of Native Cellulose Fibers by X-ray Diffraction Methods (X선회절법(線回折法)에 의한 천연 셀룰로오스 섬유의 알칼리 팽윤구조(膨潤構造))

  • Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.38-45
    • /
    • 1992
  • Fine and alkali-swollen structures of native cellulose fibers were investigated by x-ray diffraction methods. The results of fine structures are shown in Table 1. In meridional x-ray diffractograms, the relative intensity ratio R of (002) to (004) for cellulose I was ca. 0.05 and for regenerated cellulose it was ca. 0.45. It was considered that the transformation from cellulose I to cellulose II resulted from the packing or conformational change of cellulose chain. Finally. although cellulose I was not detected in the alkali-swollen celluloses treated for 1 hr to 24 hrs, washing and drying them resulted in the generation of considerable amounts of cellulose I and the amount decreased with increasing alkali duration.

  • PDF