• Title/Summary/Keyword: 셀룰로스 분해미생물

Search Result 8, Processing Time 0.027 seconds

The Compost Inoculation Effect on the Cellulose Degradation in Bench-scale Composting of Food Waste and Paper Mixture (음식쓰레기의 실험실 규모 퇴비화에서 셀룰로스 분해에 대한 퇴비 식종효과)

  • Shin, Hang-Sik;Jeong, Yeon-Koo;Hwang, Eung-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The effects of compost inoculation on the degradation of cellulosic fraction in composting of food waste and paper mixture were investigated by bench-scale composting. With the increase of seed inoculation, the time to reach the peaks of temperature, $CO_2$ evolution rate, and ammonia evolution rate was reduced, indicating that seed compost had beneficial effects on the enhanced degradation of organic materials at the early stage of composting. However, the final conversion of organic matters and the loss of ammonia were not affected by the amount of seed compost inoculated. The increasing of seed inoculum also resulted in the higher level of cellulase activity at initial stages and rapid rise to the maximums, suggesting that initial supply of sufficient cellulolytic microorganisms might facilitate the evolution of cellulase activity. The cellulose was degraded substantially during the increasing phase of cellulase activity, while they showed similar values at the end of 20 days composting. As a result, the seed inoculation seemed to be effective to the enhanced evolution of cellulase activity and cellulose degradation at initial stage of composting. But it did not contribute to increase the final degradation of cellulose after the entire composting reaction of 20 days.

  • PDF

수송시스템에서 고려중인 폐기물모듈 사용시 기체발생에 미치는 영향평가

  • 조찬희;김창락;이명찬
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.583-588
    • /
    • 1996
  • 방사성폐기물 처분후 처분장에서는 금속의 부시, 셀룰로스의 미생물분해, 방사선에 의한 분해등으로 인하여 기체가 발생하게 된다. 이 논문에서는 저준위 폐기물 수송시스템에서 고려하고 있는 폐기물모듈 개념중 6-Pack 모듈을 사용하여 치분할 때 기체발생에 미치는 영향을 평가하여 보았다. 계산은 방사성폐기물 처분장에 대한 초기 건설용량으로 고려중이었던 10만드럼 용량의 처분장을 기준으로 수행하였다. 평가결과, 6-Pack 모듈을 사용하여 처분할 때 6-pack 모듈을 사용하지 않고 처분하는 경우에 비해 H$_2$의 발생량은 1.4배 정도 증가하며, $CO_2$, CH$_4$ 등에 있어서는 영향이 거의 없는 것으로 나타났다.

  • PDF

Assessment of Gas Generation in Underground Repository of Low-Level Waste (저준위 방사성폐기물 처분장에서의 기체 발생 평가)

  • Cho, Chan-Hee;Kim, Chang-Lak;Lee, Myung-Chan;Park, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.79-92
    • /
    • 1996
  • In a repository containing low-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms and assesses the potential effects of gas generation on the performance of a radioactive waste repository. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes ; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H$_2$will be the principal gas generated within the radioactive waste cavern.

  • PDF

Characteristics of Heterotrophic Bacterial Population in the Artificial Lake Geumgang Near Estuary Barrage (금강 하구둑 인근에서 미생물군집의 특성)

  • Bae, Myoung-Sook;Park, Suhk-Hwan;Choi, Gang-Guk;Lee, Keun-Kwang;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.129-134
    • /
    • 2005
  • The monthly variations of physico-chemical and microbiological water quality were investigate in the artificial Lake Geumgang near estuary barrage. Sixty heterotrophic bacteria were isolated and identified by amplification and sequencing of 16S rDNA. Water temperature, pH, and inorganic nutrients($NH_4$-N, $NO_2$-N, $NO_3$-N, $PO_4$-P) were measured. Concentrations of DO, BOD, and inorganic nutrients were lower than in the middle-stream of Geum river The population densities of heterotrophic bacteria and total coliforms varied from $4.1{\pm}1.0\times10^2$ to $6.7{\pm}1.1{\times}10^3\;cfu\;ml^{-1}$, and 0 to $2.3{\pm}0.6{\times}10^2\;cfu\;ml^{-1}$, respectively. Among the measured numbers of physiological groups of bacteria, cellulolytic bacteria showed higher population densities than those of other physiological groups. Bacterial community structure was analysed based on 16S rDNA partial sequencing. Among 60 isolates, dominant genus was Pseudomones (20 strains).

Purification and Biochemical Characterization of β-agarase Produced by Marine Microorganism Cellulophga sp. J9-3 (해양미생물 Cellulophga sp. J9-3이 생산하는 베타-아가레이즈의 분리 및 생화학적 특성)

  • Kim, Da Som;Kim, Jong-Hee;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.329-336
    • /
    • 2021
  • Cellulophga sp. J9-3, is a gram-negative, aerobic marine bacterium belonging to the family Flavobacteriaceae. In addition to cellulose degradability, the J9-3 strain is also capable of hydrolyzing agar in the solid and liquid medium, and the production of agarase in the presence of agarose can be remarkably induced by the bacterium. From the cell culture broth of Cellulophga sp. J9-3, ammonium sulfate precipitation and three kinds of column chromatography were successively performed to purify a specific agarase protein, the AgaJ93. Purified AgaJ93 showed the strongest hydrolyzing activity towards agarose (approximately 22%), and even displayed activity towards starch. AgaJ93 hydrolyzed agarose into neoagarotetraose and neoagarohexaose via various oligosaccharide intermediates, indicating that AgaJ93 is an endo-type β-agarase. AgaJ93 showed maximum activity at a pH of 7.0 and temperature of 35 ℃. Its activity increased by more than six times in the presence of Co2+ ions. The N-terminal sequence of AgaJ93 showed 82% homology with the heat-resistant endo-type β-agarase Aga2 of Cellulophaga sp. W5C. However, the biochemical properties of the two enzymes were different. Therefore, AgaJ93 is expected to be a novel agarose, different from the previously reported β-agarases.

Isolation and Characterization of a New Cellulase-producing Marine Bacterium, Seonamhaeicola sp. S2-3 (셀룰로스분해 신규 해양미생물 Seonamhaeicola sp. S2-3의 분리 및 동정)

  • Kim, Da Som;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.539-546
    • /
    • 2020
  • A cellulolytic bacterial strain, S2-3, was isolated from sea water collected in Jeju island, Republic of Korea. The strain was aerobic and gram negative, and formed yellow colored colonies on marine agar medium. S2-3 cells were long rod-shaped, 0.5 × 0.25 ㎛ (width x length) in size, and did not have flagella. The optimal growth conditions for S2-3 were 30-35℃ and pH 6.5-7.0. Analysis of the 16S rRNA gene sequence of S2-3 revealed that it had the highest identity with those of Seonamhaeicola algicola Gy8 (97.08%), Hyunsoonleella udonensis JG48 (95.01%), and Aestuariibaculum scopimerae I-15 (94.86%). In phylogenetic analysis, S2-3 formed the same clade as S. algicola Gy8, implying that S2-3 belongs to the genus Seonamhaeicola. The major fatty acids (>10%) comprised C15:1 iso G (22.29%), C15:0 iso (17.71%), C17:0 iso 3OH (16.06%), and C15:0 iso 3OH (10.7%), resulting in quite different ratio of the component from those of S. algicola Gy8. Moreover, its biochemical characteristics, including acid production and enzyme activities, were different from those of S. algicola Gy8. Therefore, putting all these results together, we concluded S2-3 is distinct species from S. algicola Gy8, and thus named it Seonamhaeicola sp. S2-3. In liquid culture, S2-3 produced extracellular cellulases that can hydrolyze cellulose or cellooligosaccharides into cellobiose, which is a good enzyme resource that deserves further research.

Molecular cloning and characterization of β-mannanase B from Cellulosimicrobium sp. YB-43 (Cellulosimicrobium sp. YB-43의 mannanase B 유전자 클로닝과 특성 분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.336-343
    • /
    • 2016
  • A mannanase gene was cloned into Escherichia coli from Cellulosimicrobium sp. YB-43, which had been found to produce two kinds of mannanase, and sequenced completely. This mannanase gene, designated manB, consisted of 1,284 nucleotides encoding a polypeptide of 427 amino acid residues. Based on the deduced amino acid sequence, the ManB was identified to be a modular enzyme including two carbohydrate binding domains besides the catalytic domain, which was highly homologous to mannanases belonging to the glycosyl hydrolase family 5. The N-terminal amino acid sequence of ManB, purified from a cell-free extract of the recombinant E. coli carrying a Cellulosimicrobium sp. YB-43 manB gene, has been determined as QGASAASDG, which was correctly corresponding to signal peptide predicted by SignalP4.1 server for Gram-negative bacteria. The purified ManB had a pH optimum for its activity at pH 6.5~7.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum (LBG), konjac and guar gum, while it did not exhibit activity towards carboxymethylcellulose, xylan, starch, and para-nitrophenyl-${\beta}$-mannopyranoside. The activity of enzyme was inhibited very slightly by $Mg^{2+}$, $K^+$, and $Na^+$, and significantly inhibited by $Cu^{2+}$, $Zn^{2+}$, $Mn^{2+}$, and SDS. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose, which was the most predominant product resulting from the ManB hydrolysis for mannooligosaccharides and LBG.

Cloning and Characterization of Xylanase 11B Gene from Paenibacillus woosongensis (Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.155-161
    • /
    • 2017
  • A gene coding for the xylanase predicted from the partial genomic sequence of Paenibacillus woosongensis was cloned by PCR amplification and sequenced completely. This xylanase gene, designated xyn11B, consisted of 1,071 nucleotides encoding a polypeptide of 356 amino acid residues. Based on the deduced amino acid sequence, Xyn11B was identified to be a modular enzyme, including a single carbohydrate-binding module besides the catalytic domain, and was highly homologous to xylanases belonging to glycosyl hydrolase family 11. The SignalP4.1 server predicted a stretch of 26 residues in the N-terminus to be the signal peptide. Using DEAE-Sepharose and Phenyl-Sepharose column chromatography, Xyn11B was partially purified from the cell-free extract of recombinant Escherichia coli carrying a copy of the P. woosongensis xyn11B gene. The partially purified Xyn11B protein showed maximal activity at $50^{\circ}C$ and pH 6.5. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchwood xylan, whereas it did not exhibit activity towards carboxymethylcellulose, mannan, and para-nitrophenyl-${\beta}$-xylopyranoside. The activity of Xyn11B was slightly increased by $Ca^{2+}$ and $Mg^{2+}$, but was significantly inhibited by $Cu^{2+}$, $Ni^{2+}$, $Fe^{3+}$, and $Mn^{2+}$, and completely inhibited by SDS.