• Title/Summary/Keyword: 센서 geometry

Search Result 132, Processing Time 0.026 seconds

A Study on Real-time Control of Bead Height and Joint Tracking (비드 높이 및 조인트 추적의 실시간 제어 연구)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.71-78
    • /
    • 2007
  • There have been continuous efforts to automate welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, and using this, the 3 dimensional geometry of the bead is measured in real time. For the application in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

The Design of Array Geometry in 2-D Multiple Baseline Direction Finding (2차원 멀티베이스라인 방향탐지 배열 구조 설계)

  • Park, Cheol-Sun;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.988-995
    • /
    • 2006
  • In this Paper, we Present a nonharmonic may geometry design method using Euclidan minimum distance function in difference Phase spaces for 2-D (azimuth/elevation) multiple baseline antenna may which has a way to reduce the number of sensor antennas while maintaining accurate DOA estimate. The major advantages of our approach is that even the shortest interelement spacing can be larger than half-wavelength and is not limit13d to linear and it can be applied successfully to any array configuration. In multiple signals impinging situation, the performance simulation results of superresolution algorithms shows the effectiveness of the proposed method. Also the 2-D asymmetric may using the Proposed method is designed and the Performance of the manufactured away through the experimental test is verified.

A Medical Palpation Guidance System for Minimally Invasive Surgery using Contact Pressure Distribution (접촉 압력 분포를 이용한 최소 침습 수술을 위한 의료 촉진 가이던스 시스템)

  • Kim, Hyoungkyun;Chung, Wan Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.266-273
    • /
    • 2017
  • In this research a medical palpation guidance system for minimally invasive surgery (MIS) is proposed. Palpation is a useful tool for identifying a size and location of a lump during a surgery. However, conventional manual palpation is only available in open surgery, so there has been several researches about palpation assistant or guidance system for MIS. The previously developed systems are based on a pressure based or stiffness based approach. These previous approaches have some limitations in increasing complexity of the systems and lack of geometric information about the lump which is more important information for the lump removal than the stiffness information. We propose a palpation guidance system using a novel approach using contact pressure distribution. Since our approach gives the geometry information of the lump as well as the existence information, the operator can easily notice the currently identified lump region and the optimal position for the next palpation. The experiment results show that our approach can offer the geometry information of the lump correctly.

Development of A Vision-based Lane Detection System with Considering Sensor Configuration Aspect (센서 구성을 고려한 비전 기반 차선 감지 시스템 개발)

  • Park Jaehak;Hong Daegun;Huh Kunsoo;Park Jahnghyon;Cho Dongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.97-104
    • /
    • 2005
  • Vision-based lane sensing systems require accurate and robust sensing performance in lane detection. Besides, there exists trade-off between the computational burden and processor cost, which should be considered for implementing the systems in passenger cars. In this paper, a stereo vision-based lane detection system is developed with considering sensor configuration aspects. An inverse perspective mapping method is formulated based on the relative correspondence between the left and right cameras so that the 3-dimensional road geometry can be reconstructed in a robust manner. A new monitoring model for estimating the road geometry parameters is constructed to reduce the number of the measured signals. The selection of the sensor configuration and specifications is investigated by utilizing the characteristics of standard highways. Based on the sensor configurations, it is shown that appropriate sensing region on the camera image coordinate can be determined. The proposed system is implemented on a passenger car and verified experimentally.

The Signal Characteristics of Reflected Spectra of Fiber Bragg Grating Sensors with Strain Gradient and Grating Lengths (변형률 구배와 격자 길이에 따른 광섬유 브래그 격자 센서의 신호 특성 연구)

  • Kang, Dong-Hoon;Park, Sang-Oh;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.32-38
    • /
    • 2005
  • FBG sensors have been studied more actively than any other fiber optic sensor because of good multiplexing capabilities among many fiber optic sensors. The demodulation method of FBG sensors is based on the detection of wavelength shift of their sensor peaks and properties such as strain and temperature can be measured by detecting them. However, the signal stability of FBG sensors can be influenced by the strain gradient induced by structural geometry or cracks on the surface when FBG sensors are embedded into or attached on the structure. In this study, the signal characteristics of reflected spectra of FBG sensors under strain gradient were verified and the relations between the grating length of FBG sensors and the amount of strain gradient were investigated. From the experimental results, the recommended working range of FBG sensors under strain gradients was shown quantitatively with respect to grating lengths of them.

A Study on the Sensor Calibration for Low Cost Motion Capture Sensor using PSD Sensor (PSD센서를 이용한 모션캡쳐 시스템의 센서보정에 관한 연구)

  • Kim, Yu-Geon;Choi, Hun-Il;Ryu, Young-Kee;Oh, Choon-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.603-605
    • /
    • 2005
  • In this paper, we deal with a calibration method for low cost motion capture sensor using PSD (Position Sensitive Detection). The PSD sensor is employed to measure the direction of incident light from moving markers attached to motion body. To calibrate the PSD optical module, a conventional camera calibration algorithm introduced by Tsai. The 3-dimensional positions of the markers are measured by using stereo camera geometry. From the experimental results, the low cost motion capture sensor can be used in a real time system.

  • PDF

A Magnetic Microsensor based on the Hall Effect in an AC Microplasma (극미세 교류 플라즈마 내에서의 홀 효과를 이용한 마이크로 자기센서)

  • Seo, Young-Ho;Han, Ki-Ho;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1266-1272
    • /
    • 2003
  • This paper presents a new class of magnetic microsensors based on the Hall effect in AC microplasma. In the theoretical study, we develop a simple model of the plasma Hall sensor and express the plasma Hall voltage as a function of magnetic field, plasma discharge field, pressure, and electrode geometry. On this basis, we have designed and fabricated magnetic microsensors using AC neon plasma. In the experiment, we have measured the Hall voltage output of the plasma microsensors for varying five different conditions, including the frequency and the magnitude of magnetic field, the frequency and the magnitude of plasma discharge voltage, and the neon pressure. The fabricated magnetic microsensors show a magnetic field sensitivity of 8.87${\pm}$0.18㎷/G with 4.48% nonlinearity.

Two-Phase Localization Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서의 2단계 위치 추정 알고리즘)

  • Song Ha-Ju;Kim Sook-Yeon;Kwon Oh-Heum
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.172-188
    • /
    • 2006
  • Sensor localization is one of the fundamental problems in wireless sensor networks. Previous localization algorithms can be classified into two categories, the GGB (Global Geometry-Based) approaches and the LGB (Local Geometry-Based). In the GGB approaches, there are a fixed set of reference nodes of which the coordinates are pre-determined. Other nodes determine their positions based on the distances from the fixed reference nodes. In the LGB approaches, meanwhile, the reference node set is not fixed, but grows up dynamically. Most GGB algorithms assume that the nodes are deployed in a convex shape area. They fail if either nodes are in a concave shape area or there are obstacles that block the communications between nodes. Meanwhile, the LGB approach is vulnerable to the errors in the distance estimations. In this paper, we propose new localization algorithms to cope with those two limits. The key technique employed in our algorithms is to determine, in a fully distributed fashion, if a node is in the line-of-sight from another. Based on the technique, we present two localization algorithms, one for anchor-based, another for anchor-free localization, and compare them with the previous algorithms.

  • PDF

Changes according to the geometry of the shield using MCNP code system (MCNP코드 시스템을 이용한 차폐물 geometry에 따른 결과 변화에 대한 연구)

  • Kang, Ki-byung;Lee, Nam-ho;Hwang, Young-kwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1031-1033
    • /
    • 2013
  • Radiation protection, as well as finding the location of the radiation source, such as the Fukushima radiation leak accident, it is important for the early and safe disposal of nuclear accident. The three-dimensional position of the radiation source detection distance of the radiation source can provide additional information to the existing radiation detectors radiation of a two-dimensional position detection function and then it can play a decisive role in the radiation contaminant removal and decontamination work. In this research, three-dimensional semiconductor sensor based on dual radiation detectors radiation source device visible part of the research and development of efficient radiation sensor unit on the design of the shielding structure.The lightweight, high-efficiency radiation source locator implementation was attempted for the structure and thickness of the shielding and collimator to perform the simulation of the radiation shielding for the various parameters of the shape model through design the optimal structure of the MCNP-based heavy-duty tungsten shielding, lead shielding The results of this study, is a compact, lightweight three-dimensional radiation source detection and future of silicon - based sensors will be used in the study.

  • PDF

A Range-Free Localization Algorithm for Sensor Networks with a Helicopter-based Mobile Anchor Node (센서 네트워크에서 모바일 앵커 노드(헬기)를 이용한 위치인식 알고리즘)

  • Lee, Byoung-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.750-757
    • /
    • 2011
  • Wireless Sensor Network is composed of a lot of sensor nodes that are densely deployed in a field. So generally this sensor nodes are spreaded using Helicopter or Fixed wing. Each node delivers own location and acquired information to user when it detects specific events. In this paper, we propose localization algorithm without range information in wireless sensor network using helicopter. Helicopter broadcasts periodically beacon signal for sensor nodes. Sensor nodes stored own memory this beacon signal until to find another beacon point(satisfied special condition). This paper develops a localization mechanism using the geometry conjecture(perpendicular bisector of a chord) to know own location. And the simulation results demonstrate that our localization scheme outperforms Centroid, APIT in terms of a higher location accuracy.