• Title/Summary/Keyword: 센서 신호교정

Search Result 35, Processing Time 0.023 seconds

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

Development of body position sensor device for posture correction training (자세 교정훈련을 위한 체위 변환 감지 센서 디바이스의 개발)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Seo, Jae-Yong;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.80-85
    • /
    • 2020
  • Recently the incidence of musculoskeletal disorders in students and office workers is increasing, and the necessity of maintaining correct posture and corrective training is required, but related research is insufficient. In the previous study, a membrane sensor or a pressure sensor was placed on the seat cushion to see the deviation of the body weight, or a sensor that restrained the user was attached to measure the position change. In this study, a sensor device for detecting a position change in consideration of wearing comfort was developed, and the measured angle was verified through an analysis app. A sensor device consisting of an IMU sensor is attached to the cervical spine and vertebra spine to measure the position transformation in the sitting position. The change value of the position measured by the two sensors was converted into an angle, and the angle value is displayed in real time through the analysis app. In this study, the possibility of measuring the real-time change value according to the change in position, the convenience of wearing, and the tendency of angle measurement were proved. Future research should proceed with more precise angle calculation and correction of motion noise.

Evaluation of measuring accuracy of body position sensor device for posture correction (자세교정을 위한 체위변환 감지 센서 디바이스의 정확성 평가)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Kang, Min-Ho;Seo, Jae-Yong;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.128-133
    • /
    • 2021
  • Recently Recently, the incidence of spinal diseases due to poor posture among students and office workers is increasing, and various studies have been conducted to help maintain correct posture. In previous studies, a membrane sensor or a pressure sensor was placed on the seat cushion to see the weight bias, or a sensor that restrained the user was attached to measure the position change. In our previous study, we developed a sensor device which can be easily attached to the body with an adhesive gel sheet and that measures and outputs the user's posture and body position in real time, but it has a limitation in the accuracy of the sensor value. In this study, a study was conducted to improve the performance of the position conversion sensor device and quantitatively evaluate the accuracy of the angle conversion measurement value, and a high accuracy with 2.53% of error rate was confirmed. In future research, it is considered that additional research targeting actual users is needed by diversifying posture correction training contents with multimedia elements added.

A Single-Slope Column-ADC using Ramp Slope Built-In-Self-Calibration Scheme for a CMOS Image Sensor (자동 교정된 램프 신호를 사용한 CMOS 이미지 센서용 단일 기울기 Column-ADC)

  • Ham Seog-Heon;Han Gunhee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.59-64
    • /
    • 2006
  • The slope of the ramp generator in a single slope ADC(analog-to-digital converter) suffers from process and frequency variation. This variation in ramp slope causes ADC gain variation and eventually limits the performance of the ISP(image signal processing) in a CIS(CMOS image sensor) that uses the single slope ADC. This paper proposes a ramp slope BISC(built-in-self-calibration) scheme for CIS. The CIS with proposed BISC was fabricated with a $0.35{\mu}m$ process. The measurement results show that the proposed architecture effectively calibrate the ramp slope against process and clock frequency variation. The silicon area overhead is less than $0.7\%$ of the full chip area.

A neck healthy warning algorithm for identifying text neck posture prevention (거북목 자세를 예방하기 위한 목 건강 경고 알고리즘)

  • Jae-Eun Lee;Jong-Nam Kim;Hong-Seok Choi;Young-Bong Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.115-122
    • /
    • 2022
  • With the outbreak of COVID-19 a few years ago, video conferencing and electronic document work have increased, and for this reason, the proportion of computer work among modern people's daily routines is increasing. However, as more and more people work on computers in the wrong posture for a long time, the number of patients with poor eyesight and text neck is increasing. Until recently, many studies have been published to correct posture, but most of them have limitations that users may experience discomfort because they have to correct posture by wearing equipment. A posture correction sensor algorithm is proposed to prevent access to the minimum distance between a computer monitor and a person using an ultrasonic sensor device. At this time, an algorithm for minimizing false alarms among warning alarms that sound at the minimum distance is also proposed. Because the ultrasonic sensor device is used, posture correction can be performed without attaching a device to the body, and the user can relieve discomfort. In addition, experimental results showed that accuracy can be improved by reducing false alarms by removing more than half of the noise generated during distance measurement.

A Study on the Assistive System for Body Correction (신체 교정을 위한 보조 시스템에 관한 연구)

  • Kim, Ho-Joon;Chung, Jae-Pil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.231-235
    • /
    • 2011
  • In these day, the number of people who have an abnormal posture caused by bad habit are increasing. Therefore, people suffer various disease and symptoms. For correcting the posture to cure, we need continuous monitor, expenditure of time and money. In this study, we develop a posture correcting aid system in other to monitor a posture continuously and leads to pose correctly and records postural variation which are attached to the neck and the waist. The devised system showed good potential for the correct posture guide and a cure of postural defect.

Smart Chair system using Raspberry Pi (라즈베리파이를 활용한 스마트 의자)

  • Song, Gil-Ho;Na, Hyun-Ju;Park, Jung Hyun;Oh, Jae-Gon;Kim, Do-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.295-298
    • /
    • 2019
  • 본 논문은 기존의 수동으로 높이 조절만 가능한 단순 의자를 탈피하여 자라나는 아이의 신장과 체형에 맞게 의자 높이를 자동으로 조절해주는 스마트 의자를 제안한다. 본 논문의 주요 특징은 다음과 같다. 첫째, 초음파센서와 무게센서를 사용하여 아이의 신장과 체중을 측정함으로써 신체에 맞게 자동으로 의자의 각도와 높낮이를 조절해준다. 둘째, 센서를 통해 실시간으로 데이터를 수집하여 App 화면에 건강 상태를 보여주고 아이 등급표와 비교하여 아이의 성장률을 가시적으로 보여준다. 셋째, 압력 센서를 이용하여 아이의 자세 상태를 보여주고 App 알림과 데이터 분석으로 아이의 자세 교정에 도움을 준다. 넷째, 신호를 전달하면 지정된 자리로 의자가 자동으로 이동하는 기능을 제공한다. 제안된 시스템은 IoT 기술을 접목함으로써 성장이 빠른 영유아를 키우는 가정을 대상으로 의자 교체에 필요한 비용 절감 효과와 바쁜 현대인들을 위해 아이의 건강관리를 보다 효율적으로 돕는 것을 목표로 한다.

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.