• Title/Summary/Keyword: 센서 망

Search Result 752, Processing Time 0.03 seconds

Deep Learning based Abnormal Vibration Prediction of Drone (딥러닝을 통한 드론의 비정상 진동 예측)

  • Hong, Jun-Ki;Lee, Yang-Kyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.67-73
    • /
    • 2021
  • In this paper, in order to prevent the fall of the drone, a study was conducted to collect vibration data from the motor connected to the propeller of the drone, and to predict the abnormal vibration of the drone using recurrent neural network (RNN) and long short term memory (LSTM). In order to collect the vibration data of the drone, a vibration sensor is attached to the motor connected to the propeller of the drone to collect vibration data on normal, bar damage, rotor damage, and shaft deflection, and abnormal vibration data are collected through LSTM and RNN. The root mean square error (RMSE) value of the vibration prediction result were compared and analyzed. As a result of the comparative simulation, it was confirmed that both the predicted result through RNN and LSTM predicted the abnormal vibration pattern very accurately. However, the vibration predicted by the LSTM was found to be 15.4% lower on average than the vibration predicted by the RNN.

Implementation of CNN Model for Classification of Sitting Posture Based on Multiple Pressure Distribution (다중 압력분포 기반의 착석 자세 분류를 위한 CNN 모델 구현)

  • Seo, Ji-Yun;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • Musculoskeletal disease is often caused by sitting down for long period's time or by bad posture habits. In order to prevent musculoskeletal disease in daily life, it is the most important to correct the bad sitting posture to the right one through real-time monitoring. In this study, to detect the sitting information of user's without any constraints, we propose posture measurement system based on multi-channel pressure sensor and CNN model for classifying sitting posture types. The proposed CNN model can analyze 5 types of sitting postures based on sitting posture information. For the performance assessment of posture classification CNN model through field test, the accuracy, recall, precision, and F1 of the classification results were checked with 10 subjects. As the experiment results, 99.84% of accuracy, 99.6% of recall, 99.6% of precision, and 99.6% of F1 were verified.

CNN-LSTM Combination Method for Improving Particular Matter Contamination (PM2.5) Prediction Accuracy (미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법)

  • Hwang, Chul-Hyun;Shin, Kwang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2020
  • Recently, due to the proliferation of IoT sensors, the development of big data and artificial intelligence, time series prediction research on fine dust pollution is actively conducted. However, because the data representing fine dust contamination changes rapidly, traditional time series prediction methods do not provide a level of accuracy that can be used in the field. In this paper, we propose a method that reflects the classification results of environmental conditions through CNN when predicting micro dust contamination using LSTM. Although LSTM and CNN are independent, they are integrated into one network through the interface, so this method is easier to understand than the application LSTM. In the verification experiments of the proposed method using Beijing PM2.5 data, the prediction accuracy and predictive power for the timing of change were consistently improved in various experimental cases.

IoT Collaboration System Based on Edge Computing for Smart Livestock System (스마트 축사를 위한 에지 컴퓨팅 기반 IoT 협업 시스템)

  • Ahn, Chi-Hyun;Lee, Hyungtak;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.258-264
    • /
    • 2022
  • The smart farm for livestock, in which information and communication technology (ICT) is combined with livestock farm, is mostly based on the cloud computing paradigm. A cloud-based smart livestock farm has disadvantages such as increased response time, burden on cloud resource caused by the increased number of IoT sensors, traffic burden on the network, and lack of failure resilience mechanisms through collaboration with adjacent IoT devices. In this paper, with these problems in mind, we propose an IoT collaboration system based on edge computing. By using the relatively limited computing resources of the edge device to share the cloud's web server function, we aim to reduce the cloud's resources needed and improve response time to user requests. In addition, through the heartbeat-based failure recovery mechanism, IoT device failures were detected and appropriate measures were taken.

Smart Structural Health Monitoring Using Carbon Nanotube Polymer Composites (탄소나노튜브 고분자 복합체 기반 스마트 구조건전성 진단)

  • Park, Young-Bin;Pham, Giang T.;Wang, Ben;Kim, Sang-Woo
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents an experimental study on the piezoresistive behavior of nanocomposite strain sensors subjected to various loading modes and their capability to detect structural deformations and damages. The electrically conductive nanocomposites were fabricated in the form of a film using various types of thermoplastic polymers and multi-walled carbon nanotubes (MWNTs) at various loadings. In this study, the nanocomposite strain sensors were bonded to a substrate and subjected to tension, flexure, or compression. In tension and flexure, the resistivity change showed dependence on measurement direction, indicating that the sensors can be used for multi-directional strain sensing. In addition, the sensors exhibited a decreasing behavior in resistivity as the compressive load was applied, suggesting that they can be used for pressure sensing. This study demonstrates that the nanocomposite strain sensors can provide a pathway to affordable, effective, and versatile structural health monitoring.

Development of Demonstration Technology for Flash Flood Forecasting using Rainfall Radar in Flood Vulnerable Area of Nakdong River Basin (강우레이더 자료를 활용한 낙동강유역 홍수예보 취약지역 돌발홍수예보 실증 기술 개발)

  • Hwang, Seok Hwan;Shin, Chang Ho;Kim, Keuk Soo;Choi, Kyu Hyun;Cho, Hyo Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.320-320
    • /
    • 2021
  • 홍수피해가 빈발하는 도시 및 소규모 산지 유역에서와 같이 지체시간이 짧은 유역에서 국지적으로 발생하는 돌발홍수는 우량계와 기존 하천유역 예보시스템만으론 예보가 불가능하다. 동일한 강우에서도 지역에 따라 침수시간이나 침수심이 달라지기 때문에 정확한 돌발홍수예보를 위해서는 지역에 따른 침수특성과 유속특성을 달리 고려해야 한다. '골든타임 확보를 위한 유역 시공간 상세 홍수예보기술 개발(환경부)'에서 개발한 '국지 돌발홍수예측 시스템'은 지역별 검증된 침수특성과 유속특성의 관계식을 산정하여 돌발홍수예보 기준을 설정하였다. 그리고 도달시간이 짧은 도시 및 산지에서 홍수예보 선행시간을 확보하기 위해 강우레이더 기반 돌발홍수 예측 시스템을 구축하여 시범 운영 중이다. 그러나 도시·산지 중소하천유역 등 홍수예보 취약지역에 대한 돌발홍수예보 정확도를 제고하기 위해서는 기 설정된 돌발홍수위험 예보 기준을 정밀하게 평가·검증·개선 할 수 있는 실증 체계가 반드시 필요하다. 이러한 배경에서 본 연구에서는 2021년부터 3개년 동안 홍수예보 취약지역에 강우레이더와 경제적 IoT 관측센서 정보를 기반으로 돌발홍수예보 실증기술을 개발하여 전국 돌발홍수예보 실용화 기반 구축하고자 한다. 홍수피해 취약지역인 도심지, 산지·계곡, 해안지역에 실증 테스트베드를 선정하고 강우레이더-IoT 실증 관측망을 구축하여 돌발홍수예보 기술 실증과 돌발홍수 위험기준 설정 가이드라인을 마련하고자 한다. 더불어 도시 중소하천유역 홍수예보 활용을 위한 소형강우레이더 강우량 정확도 개선 기술 개발과 홍수기 강우레이더 기반 홍수예보 관-연 협업 시범 운영을 추진할 계획이며, 최종적으로는 강우레이더와 IoT 정보 기반 돌발홍수 실증 시스템을 구축 운영하고자 한다.

  • PDF

Development of multi-depth and artificial intelligence smart measuring device for analyzing surface water-groundwater correlation characteristics (지표수-지하수 연계 특성 분석용 다심도 및 인공지능 스마트 계측장치 개발)

  • Lim, Woo-Seok;Hwang, Chan-Ik;Choi, Myoung-Rak;Kim, Gyoo-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.380-380
    • /
    • 2020
  • 가뭄 피해 극복을 위한 인공 함양지 통합관리시스템의 일부로써 지표수-지하수 연계 특성 분석용 의사결정을 전달하는 인공지능 스마트 계측기의 필요성이 꾸준히 제기되어 왔으나 실용성과 효율성을 동시에 갖춘 계측기는 시장에 출시되지 않았다. 기존의 계측기는 단순 측정이 목적이었으며 분석을 위해서는 일정 기간 직접 계측하여 분석하거나, 계측데이터를 원격 망을 통하여 서버로 전송하고 관리자가 데이터를 해석하는 방식을 취하였다. 또한, 수질 계측과 수질의 미소 변동성을 동시에 계측하여 수질 변화상태를 판단 할 수 있는 수질 계측기는 상품화되지 않아 다목적 수질 분석에 한계점을 갖고 있다. 이러한 한계점이 기존의 지하수 수질 계측기로는 불가능한 수중 라돈을 채수 없이 계측 가능하도록 하고, 순간 수질 변화 및 수질 변화 요인분석이 가능한 계측을 위하여 라돈, 전도도, 수위, 수온 및 필름형 pH 센서를 개발하여 적용한 다항목 계측기로 통합하는 연구가 필요한 이유이다. 개발한 계측기는 빅데이터 기반의 지능형 수질 변동성 분석 알고리즘을 내장하고 수직 깊이 방향의 다중심도 계측이 가능하도록 핵심적인 통신 연결성을 확보하였고 다양한 수질에서 견딜 수 있으며 특히 인공함양에서 발생하는 철, 망간에 부식되지 않는 재질을 이용하여 설계한 '지표수-지하수 연계 특성 분석용 다심도 및 인공지능 스마트 계측장치'이다. 본 장치는 기존 지하수 수질 계측기에서는 불가능하였던 순간 수위변화 및 수위변화 요인분석이 가능한 계측을 위하여 초당 측정 샘플링 주파수(10Hz)를 높인 계측회로를 개발하여 적용하였다.

  • PDF

Analyses of Security Issues and Requirements Under Surroundings of Internet of Things (사물인터넷 환경하에서 보안 이슈 및 요구사항 분석)

  • Jung Tae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.639-647
    • /
    • 2023
  • A variety of communications are developed and advanced by integration of wireless and wire connections with heterogeneous system. Traditional technologies are mainly focus on information technology based on computer techniques in the field of industry, manufacture and automation fields. As new technologies are developed and enhanced with traditional techniques, a lot of new applications are emerged and merged with existing mechanism and skills. The representative applications are IoT(Internet of Things) services and applications. IoT is breakthrough technologies and one of the innovation industries which are called 4 generation industry revolution. Due to limited resources in IoT such as small memory, low power and computing power, IoT devices are vulnerable and disclosed with security problems. In this paper, we reviewed and analyzed security challenges, threats and requirements under IoT service.

Sources separation of passive sonar array signal using recurrent neural network-based deep neural network with 3-D tensor (3-D 텐서와 recurrent neural network기반 심층신경망을 활용한 수동소나 다중 채널 신호분리 기술 개발)

  • Sangheon Lee;Dongku Jung;Jaesok Yu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.357-363
    • /
    • 2023
  • In underwater signal processing, separating individual signals from mixed signals has long been a challenge due to low signal quality. The common method using Short-time Fourier transform for spectrogram analysis has faced criticism for its complex parameter optimization and loss of phase data. We propose a Triple-path Recurrent Neural Network, based on the Dual-path Recurrent Neural Network's success in long time series signal processing, to handle three-dimensional tensors from multi-channel sensor input signals. By dividing input signals into short chunks and creating a 3D tensor, the method accounts for relationships within and between chunks and channels, enabling local and global feature learning. The proposed technique demonstrates improved Root Mean Square Error and Scale Invariant Signal to Noise Ratio compared to the existing method.

Development of CanSat System for Vehicle Tracking based on Jetson Nano (젯슨 나노 기반의 차량 추적 캔위성 시스템 개발)

  • Lee, Younggun;Lee, Sanghyun;You, Seunghoon;Lee, Sangku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.556-558
    • /
    • 2022
  • This paper proposes a CanSat system with a vehicle tracking function based on Jetson Nano, a high-performance small computer capable of operating artificial intelligence algorithms. The CanSat system consists of a CanSat and a ground station. The CanSat falls in the atmosphere and transmits the data obtained through the installed sensors to the ground station using wireless communication. The existing CanSat is limited to the mission of simply transmitting the collected information to the ground station, and there is a limit to efficiently performing the mission due to the limited fall time and bandwidth limitation of wireless communication. The Jetson Nano based CanSat proposed in this paper uses a pre-trained neural network model to detect the location of a vehicle in each image taken from the air in real time, and then uses a 2-axis motor to move the camera to track the vehicle.

  • PDF