In this paper, in order to prevent the fall of the drone, a study was conducted to collect vibration data from the motor connected to the propeller of the drone, and to predict the abnormal vibration of the drone using recurrent neural network (RNN) and long short term memory (LSTM). In order to collect the vibration data of the drone, a vibration sensor is attached to the motor connected to the propeller of the drone to collect vibration data on normal, bar damage, rotor damage, and shaft deflection, and abnormal vibration data are collected through LSTM and RNN. The root mean square error (RMSE) value of the vibration prediction result were compared and analyzed. As a result of the comparative simulation, it was confirmed that both the predicted result through RNN and LSTM predicted the abnormal vibration pattern very accurately. However, the vibration predicted by the LSTM was found to be 15.4% lower on average than the vibration predicted by the RNN.
Journal of the Institute of Convergence Signal Processing
/
v.21
no.2
/
pp.73-78
/
2020
Musculoskeletal disease is often caused by sitting down for long period's time or by bad posture habits. In order to prevent musculoskeletal disease in daily life, it is the most important to correct the bad sitting posture to the right one through real-time monitoring. In this study, to detect the sitting information of user's without any constraints, we propose posture measurement system based on multi-channel pressure sensor and CNN model for classifying sitting posture types. The proposed CNN model can analyze 5 types of sitting postures based on sitting posture information. For the performance assessment of posture classification CNN model through field test, the accuracy, recall, precision, and F1 of the classification results were checked with 10 subjects. As the experiment results, 99.84% of accuracy, 99.6% of recall, 99.6% of precision, and 99.6% of F1 were verified.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.1
/
pp.57-64
/
2020
Recently, due to the proliferation of IoT sensors, the development of big data and artificial intelligence, time series prediction research on fine dust pollution is actively conducted. However, because the data representing fine dust contamination changes rapidly, traditional time series prediction methods do not provide a level of accuracy that can be used in the field. In this paper, we propose a method that reflects the classification results of environmental conditions through CNN when predicting micro dust contamination using LSTM. Although LSTM and CNN are independent, they are integrated into one network through the interface, so this method is easier to understand than the application LSTM. In the verification experiments of the proposed method using Beijing PM2.5 data, the prediction accuracy and predictive power for the timing of change were consistently improved in various experimental cases.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.2
/
pp.258-264
/
2022
The smart farm for livestock, in which information and communication technology (ICT) is combined with livestock farm, is mostly based on the cloud computing paradigm. A cloud-based smart livestock farm has disadvantages such as increased response time, burden on cloud resource caused by the increased number of IoT sensors, traffic burden on the network, and lack of failure resilience mechanisms through collaboration with adjacent IoT devices. In this paper, with these problems in mind, we propose an IoT collaboration system based on edge computing. By using the relatively limited computing resources of the edge device to share the cloud's web server function, we aim to reduce the cloud's resources needed and improve response time to user requests. In addition, through the heartbeat-based failure recovery mechanism, IoT device failures were detected and appropriate measures were taken.
Park, Young-Bin;Pham, Giang T.;Wang, Ben;Kim, Sang-Woo
Composites Research
/
v.22
no.6
/
pp.1-6
/
2009
This paper presents an experimental study on the piezoresistive behavior of nanocomposite strain sensors subjected to various loading modes and their capability to detect structural deformations and damages. The electrically conductive nanocomposites were fabricated in the form of a film using various types of thermoplastic polymers and multi-walled carbon nanotubes (MWNTs) at various loadings. In this study, the nanocomposite strain sensors were bonded to a substrate and subjected to tension, flexure, or compression. In tension and flexure, the resistivity change showed dependence on measurement direction, indicating that the sensors can be used for multi-directional strain sensing. In addition, the sensors exhibited a decreasing behavior in resistivity as the compressive load was applied, suggesting that they can be used for pressure sensing. This study demonstrates that the nanocomposite strain sensors can provide a pathway to affordable, effective, and versatile structural health monitoring.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.320-320
/
2021
홍수피해가 빈발하는 도시 및 소규모 산지 유역에서와 같이 지체시간이 짧은 유역에서 국지적으로 발생하는 돌발홍수는 우량계와 기존 하천유역 예보시스템만으론 예보가 불가능하다. 동일한 강우에서도 지역에 따라 침수시간이나 침수심이 달라지기 때문에 정확한 돌발홍수예보를 위해서는 지역에 따른 침수특성과 유속특성을 달리 고려해야 한다. '골든타임 확보를 위한 유역 시공간 상세 홍수예보기술 개발(환경부)'에서 개발한 '국지 돌발홍수예측 시스템'은 지역별 검증된 침수특성과 유속특성의 관계식을 산정하여 돌발홍수예보 기준을 설정하였다. 그리고 도달시간이 짧은 도시 및 산지에서 홍수예보 선행시간을 확보하기 위해 강우레이더 기반 돌발홍수 예측 시스템을 구축하여 시범 운영 중이다. 그러나 도시·산지 중소하천유역 등 홍수예보 취약지역에 대한 돌발홍수예보 정확도를 제고하기 위해서는 기 설정된 돌발홍수위험 예보 기준을 정밀하게 평가·검증·개선 할 수 있는 실증 체계가 반드시 필요하다. 이러한 배경에서 본 연구에서는 2021년부터 3개년 동안 홍수예보 취약지역에 강우레이더와 경제적 IoT 관측센서 정보를 기반으로 돌발홍수예보 실증기술을 개발하여 전국 돌발홍수예보 실용화 기반 구축하고자 한다. 홍수피해 취약지역인 도심지, 산지·계곡, 해안지역에 실증 테스트베드를 선정하고 강우레이더-IoT 실증 관측망을 구축하여 돌발홍수예보 기술 실증과 돌발홍수 위험기준 설정 가이드라인을 마련하고자 한다. 더불어 도시 중소하천유역 홍수예보 활용을 위한 소형강우레이더 강우량 정확도 개선 기술 개발과 홍수기 강우레이더 기반 홍수예보 관-연 협업 시범 운영을 추진할 계획이며, 최종적으로는 강우레이더와 IoT 정보 기반 돌발홍수 실증 시스템을 구축 운영하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.380-380
/
2020
가뭄 피해 극복을 위한 인공 함양지 통합관리시스템의 일부로써 지표수-지하수 연계 특성 분석용 의사결정을 전달하는 인공지능 스마트 계측기의 필요성이 꾸준히 제기되어 왔으나 실용성과 효율성을 동시에 갖춘 계측기는 시장에 출시되지 않았다. 기존의 계측기는 단순 측정이 목적이었으며 분석을 위해서는 일정 기간 직접 계측하여 분석하거나, 계측데이터를 원격 망을 통하여 서버로 전송하고 관리자가 데이터를 해석하는 방식을 취하였다. 또한, 수질 계측과 수질의 미소 변동성을 동시에 계측하여 수질 변화상태를 판단 할 수 있는 수질 계측기는 상품화되지 않아 다목적 수질 분석에 한계점을 갖고 있다. 이러한 한계점이 기존의 지하수 수질 계측기로는 불가능한 수중 라돈을 채수 없이 계측 가능하도록 하고, 순간 수질 변화 및 수질 변화 요인분석이 가능한 계측을 위하여 라돈, 전도도, 수위, 수온 및 필름형 pH 센서를 개발하여 적용한 다항목 계측기로 통합하는 연구가 필요한 이유이다. 개발한 계측기는 빅데이터 기반의 지능형 수질 변동성 분석 알고리즘을 내장하고 수직 깊이 방향의 다중심도 계측이 가능하도록 핵심적인 통신 연결성을 확보하였고 다양한 수질에서 견딜 수 있으며 특히 인공함양에서 발생하는 철, 망간에 부식되지 않는 재질을 이용하여 설계한 '지표수-지하수 연계 특성 분석용 다심도 및 인공지능 스마트 계측장치'이다. 본 장치는 기존 지하수 수질 계측기에서는 불가능하였던 순간 수위변화 및 수위변화 요인분석이 가능한 계측을 위하여 초당 측정 샘플링 주파수(10Hz)를 높인 계측회로를 개발하여 적용하였다.
The Journal of the Convergence on Culture Technology
/
v.9
no.4
/
pp.639-647
/
2023
A variety of communications are developed and advanced by integration of wireless and wire connections with heterogeneous system. Traditional technologies are mainly focus on information technology based on computer techniques in the field of industry, manufacture and automation fields. As new technologies are developed and enhanced with traditional techniques, a lot of new applications are emerged and merged with existing mechanism and skills. The representative applications are IoT(Internet of Things) services and applications. IoT is breakthrough technologies and one of the innovation industries which are called 4 generation industry revolution. Due to limited resources in IoT such as small memory, low power and computing power, IoT devices are vulnerable and disclosed with security problems. In this paper, we reviewed and analyzed security challenges, threats and requirements under IoT service.
In underwater signal processing, separating individual signals from mixed signals has long been a challenge due to low signal quality. The common method using Short-time Fourier transform for spectrogram analysis has faced criticism for its complex parameter optimization and loss of phase data. We propose a Triple-path Recurrent Neural Network, based on the Dual-path Recurrent Neural Network's success in long time series signal processing, to handle three-dimensional tensors from multi-channel sensor input signals. By dividing input signals into short chunks and creating a 3D tensor, the method accounts for relationships within and between chunks and channels, enabling local and global feature learning. The proposed technique demonstrates improved Root Mean Square Error and Scale Invariant Signal to Noise Ratio compared to the existing method.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.556-558
/
2022
This paper proposes a CanSat system with a vehicle tracking function based on Jetson Nano, a high-performance small computer capable of operating artificial intelligence algorithms. The CanSat system consists of a CanSat and a ground station. The CanSat falls in the atmosphere and transmits the data obtained through the installed sensors to the ground station using wireless communication. The existing CanSat is limited to the mission of simply transmitting the collected information to the ground station, and there is a limit to efficiently performing the mission due to the limited fall time and bandwidth limitation of wireless communication. The Jetson Nano based CanSat proposed in this paper uses a pre-trained neural network model to detect the location of a vehicle in each image taken from the air in real time, and then uses a 2-axis motor to move the camera to track the vehicle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.