• Title/Summary/Keyword: 센서 구동기

Search Result 291, Processing Time 0.024 seconds

Speed Control of a Sinusoidal Type Brushless DC Motor using an Auto-tuning Method (자동동조 기법을 이용한 정현파형 BLDC 전동기의 속도제어)

  • 전인효;노민식;최중경;박승엽
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.41-50
    • /
    • 1999
  • The brushless DC motor is widely being used in unmanned factories for its easy maintenance and characteristics of controllability. In this paper, we designed a speed control servo system of a sinusoidal type bmshless DC motor which has high efficiency and usefulness in the industrial fields. This servo system is realized by a controller which is required for driving motors and a new auto-tuning PI control algorithm. The DSP(Digita1 Signal Processor) is adopted as a main controller and a sensor signal processor owing to its fast computational capability and suitable architecture. Also, the hardware PWnl(Pulse Width Modulation) current controller is implemented to pursue a speed command exactly. By experimental results, it is verified that the speed response is pursued fast after command value and the steady-state response is well converged for command value variation without overshoots.

  • PDF

Design of thermal system using 3-way valve and PTC to which a solar module (태양광 모듈이 부착된 PTC 집열기 및 3웨이 밸브를 이용한 온열 시스템 설계)

  • Song, Je-Ho;Lee, In-Sang;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.454-459
    • /
    • 2017
  • In this study, a thermal system was designed using a 3-way valve and PTC attached to a solar module. This design could help solve the problem of rising fossil fuel costs caused by limited reserves and environmental problems resulting from fossil fuel use. The thermal system is a hot-air and heating control system composed of a temperature sensor part, mode setting part (for hot air and heating modes), supply part, and thermal system control part. The temperature sensor part has piping and an indoor temperature display, and the temperature setting part has multiple monitoring functions. The mode setting part switches between hot air and heating modes and can be used to set the temperature. The thermal system control part performs functions such as PTC control and temperature setting, PTC day and night and time selection, hot air and heating control, and three-way valve selection. The results verify that the system operates with stable response speeds of $680{\mu}s$ in the temperature sensor part, $700{\mu}s$ in the mode setting part, and $610{\mu}s$ in the thermal system control part.

Virtual Dialog System Based on Multimedia Signal Processing for Smart Home Environments (멀티미디어 신호처리에 기초한 스마트홈 가상대화 시스템)

  • Kim, Sung-Ill;Oh, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.173-178
    • /
    • 2005
  • This paper focuses on the use of the virtual dialog system whose aim is to build more convenient living environments. In order to realize this, the main emphasis of the paper lies on the description of the multimedia signal processing on the basis of the technologies such as speech recognition, speech synthesis, video, or sensor signal processing. For essential modules of the dialog system, we incorporated the real-time speech recognizer based on HM-Net(Hidden Markov Network) as well as speech synthesis into the overall system. In addition, we adopted the real-time motion detector based on the changes of brightness in pixels, as well as the touch sensor that was used to start system. In experimental evaluation, the results showed that the proposed system was relatively easy to use for controlling electric appliances while sitting in a sofa, even though the performance of the system was not better than the simulation results owing to the noisy environments.

Development of a Pneumatic Semi-Automatic Clutch for Commercial Vehicles based on the CAN Communication (CAN통신 기반의 상용차용 공압구동형 세미오토 클러치 개발)

  • Kim, Seong-Jin;Lee, Dong-Gun;Ahn, Kyeong-Hwan;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4742-4748
    • /
    • 2014
  • A semi-automatic clutch was developed for drivers of vehicles with manual transmission. The clutch is operated by pressing a switch on the gear stick without stepping on a clutch pedal when the driver wants to shift gears. To automatic control a clutch, driving information is provided by sensors installed under the vehicle. On the other hand, sensors are prone to failure under severe driving conditions and a long time is needed to install or repair these sensors in the vehicle. In this paper, a semi-automatic clutch that received driving information by CAN communication from the ECU was developed and a pneumatic actuator was used to operate the clutch. The semi-automatic clutch by a pneumatic cylinder was operated with a supply air pressure of more than 3bar.

The effects of water molecules on the electrical hysteresis observed in the $SnO_2$ nanowire FETs on polyimide substrate

  • Hong, Sang-Gi;Kim, Dae-Il;Kim, Gyu-Tae;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.66-66
    • /
    • 2010
  • $SnO_2$ 나노선은 n-type 반도체 특성을 띄며 트랜지스터, 가스 센서, pH 센서 등 여러 분야에 걸쳐 다양하게 사용되고 있다. $SnO_2$ 나노선은 그 자체만으로 시계방향의 전기적 히스테리시스를 보이며 이것은 나노선 표면에 흡착된 물이나 산소가 발생시키는 전자 갇힘 현상이 가장 큰 원인으로 작용한다. 특히 고분자를 게이트 절연막으로 사용할 경우 게이트 절연막의 전기적 히스테리시스가 소자 특성에 영향을 미치게 되며, 고분자 절연막의 히스테리시스는 $SnO_2$ 나노선의 히스테리시스와 반대인 반시계 방향의 특성을 보인다. 고분자 내에서 발생하는 히스테리시스는 고분자 사이에 흡착된 물 분자나 고분자의 높은 극성을 가지는 작용기 등이 원인으로 작용한다. 전기적 히스테리시스는 FET소자를 구동하는데 있어 부적절한 특성으로, 이것의 원인을 이해하는 것은 중요하며 히스테리시스의 방향과 크기를 조절할 수 있는 기술 또한 중요하다. 본 연구에서는 폴리이미드(PMDA-ODA)를 게이트 절연막으로 사용하여 플렉시블 기판을 만들고 그 위에 $SnO_2$ 나노선을 슬라이딩 전이 방식으로 정렬하여 플렉시블 FET를 제작하였다. 제작된 소자는 $0.7cm\;{\times}\;0.7cm$ 넓이 안에 300개의 FET가 존재하며 SEM 이미지를 통해 넓이 $50{\mu}m$, 길이 $5{\mu}m$의 FET채널에 약 150개의 나노선이 연결되어 있는 것을 확인했다. 이 소자의 히스테리시스는 폴리이미드의 교차결합 정도에 따라, 그리고 폴리이미드 절연막을 제작할 때의 습도에 따라 변하게 된다. 교차결합이 많아지고 습도가 낮아질수록 폴리이미드 절연막 내부에 흡착되는 물분자가 줄어들게 되고 절연막의 히스테리시스가 사라지며 시계방향의 나노선 히스테리시스가 지배적이 된다. 반대로 교차결합이 줄어들고 습도가 높아질수록 폴리이미드 절연막 내부에 물분자가 늘어 나면서 시계반대방향의 폴리이미드 히스테리시스가 FET의 전기적 특성에서 눈에 띄게 나타난다. 이 실험을 통해 고분자 절연막을 사용한 $SnO_2$ 나노선 FET의 전기적 히스테리시스를 조절할 수 있었으며, 소자의 히스테리시스를 없앨 수 있는 가능성에 대해서 논하고자 한다.

  • PDF

Analysis of Acoustic Reflectors for SAW Temperature Sensor and Wireless Measurement of Temperature (SAW 온도센서용 음향 반사판 분석 및 무선 온도 측정)

  • Kim, Ki-Bok;Kim, Seong-Hoon;Jeong, Jae-Kee;Shin, Beom-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.54-62
    • /
    • 2013
  • In this study, a wireless and non-power SAW (surface acoustic wave) temperature sensor was developed. The single inter-digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on $128^{\circ}$ rot-X $LiNbO_3$ piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to $80^{\circ}C$ and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99.

Improvement of Katsuobushi smoking machine for the reduction of benzo(a)pyrene (가쓰오부시 훈연기 개선 및 벤조피렌 저감화)

  • Hong, Ju Hee;Hwang, Sang Min;Lee, Seung Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.162-167
    • /
    • 2017
  • A Katsuobushi smoking machine was developed and evaluated to determine its benzo(a)pyrene reducing effect. The machine was equipped with two heaters for smoking and chamber heating. The smoke-generating system was equipped with a cadmium sulfide (CdS) smoke sensor, an on/off controller, and a rotating feeder with a smoke inlet. Raw bonito was steamed and then smoked under three smoke levels. After smoking at $45^{\circ}C$ for 108 h, the benzo(a)pyrene concentrations were 5.87, 7.83, and $11.41{\mu}g/kg$ at the low, middle, and high smoke levels, respectively. The benzo(a)pyrene concentrations after low-level smoking at 45, 65, and $85^{\circ}C$ for 108 h were 5.87, 4.82, and $3.27{\mu}g/kg$, respectively. Accordingly, the optimal conditions for benzo(a)pyrene reduction were a lower smoke level and higher smoking temperature. These optimal smoking conditions can be implemented with the newly developed machine, but is not possible using a conventional Katsuobushi smoking machine.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Development and Implementation of Functions for Mobile Robot Navigation (이동 로봇의 자율 주행용 함수 개발 및 구현)

  • Jeong, Seok-Ki;Ko, Nak-Yong;Kim, Tae-Gyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.421-432
    • /
    • 2013
  • This paper describes implementation of functions for mobile robot localization, which is one of the vital technologies for autonomous navigation of a mobile robot. There are several function libraries for mobile robot navigation. Some of them have limited applicability for practical use since they can be used only for simulation. Our research focuses on development of functions which can be used for localization of indoor robots. The functions implement deadreckoning and motion model of mobile robots, measurement model of range sensors, and frequently used calculations on angular directions. The functions encompass various types of robots and sensors. Also, various types of uncertainties in robot motion and sensor measurements are implemented so that the user can select proper ones for their use. The functions are tested and verified through simulation and experiments.

Development of Deterioration Diagnosis System for Aged ACSR-OC Conductors in HV Overhead Distribution Lines (고압 가공배전선의 노화된 ACSR-OC 도체에 대한 열화진단시스템 개발)

  • 김성덕;이승호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.43-50
    • /
    • 2000
  • Design and experiments of a nondestructive testing system with a solenoid eddy current sensor to inspect deterioration of ASCR-OC (ACSR Outdoor Cross-linked Polyethylene Insulated Wires) usually used in HV overhead distribution lines in domestic areas in presented in this paper. Through corrosion mechanisms and deterioration results for ACSR-OC conductors are examined, it is shown that corrosion may lead to the reduction of the effective cross section area of conductors is proposed. The measurement system consisting of a constant current source with a RF frequency, a signal processing unit and a motor driver/ controller is designed and implemented. This instrument has such capabilities as detecting the sensor output and estimating diameter change of the testing conductors, continuously. As a result, it was verified that such corrosion detector system with an eddy current sensor can be shown good effectiveness for estimating the serious faults due to deterioration in overhead distribution lines and giving an early warming before severe aged conductor may lead to fail.

  • PDF