• Title/Summary/Keyword: 센서모델 보정

Search Result 124, Processing Time 0.029 seconds

A Study on u-GIS Outdoor Augmented Reality System Development (u-GIS 야외 증강현실 시스템 개발에 관한 연구)

  • Kim, Jeong-Hwan;Kim, Shin-Hyoung;Kil, Woo-Sung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.183-188
    • /
    • 2009
  • In this paper, we preset a method for the development of u-GIS outdoor augmented reality(AR) system. The proposed system is consist of three parts. First, sensor acquisition and calibration for AR, Second, camera and sensor based tracking for AR, Third, integration of sensor information and 3D models. We combine spatial information of real and virtual spaces through u-GIS AR system.

  • PDF

Registration between High-resolution Optical and SAR Images Using linear Features (선형정보를 이용한 고해상도 광학영상과 SAR 영상 간 기하보정)

  • Han, You-Kyung;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.141-150
    • /
    • 2011
  • Precise image-to-image registration is required to process multi-sensor data together. The purpose of this paper is to develop an algorithm that register between high-resolution optical and SAR images using linear features. As a pre-processing step, initial alignment was fulfilled using manually selected tie points to remove any dislocations caused by scale difference, rotation, and translation of images. Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on their similarity. Outliers having larger geometric differences than general matching points were eliminated. The remaining points were used to construct a new transformation model, which was combined the piecewise linear function with the global affine transformation, and applied to increase the accuracy of geometric correction.

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images (KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Chae, Tae-Byeong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.667-675
    • /
    • 2011
  • In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

Precision correction of satellite-based linear pushbroom-type CCD camera images (선형 CCD카메라 영상의 정밀 기하학적 보정)

  • 신동석;이영란;이흥규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.137-148
    • /
    • 1998
  • An algorithm developed for the precision correction of high resolution satellite images is introduced in this paper. In general, the polynomial warping algorithm which derives polynomial equations between GCPs extracted from an image and a base map requires many GCPs well-distributed over the image. The precision correction algorithm described in this paper is based on a sensor-orbit-Earth geometry, and therefore, it is capable of correcting a raw image using only 2-3 GCPs. This algorithm estimates the errors on the orbit determination and the attitude of the satellite by using a Kalman filter. This algorithm was implemented, tested and integrated into the KITSAT-3 image preprocessing software.

Digital Sun Sensor Development using CMOS Image Sensor (CMOS-Image Sensor(CIS)를 이용한 디지털 태양센서 개발)

  • Rhee, Sung-Ho;Jang, Tae-Seong;Lee, Chel;Kang, Kyung-In;Kim, Hyung-Myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • This paper deals with the Fine Digital Sun Sensor (FDSS) for Science & Technology Satellite 2(STSAT-2). The FDSS was firstly developed by using CMOS-Image sensor(CIS) in South Korea. This paper will describe the configuration of the FDSS, the design of the optical part, the analysis result of the optical characteristics of the sunlight, and the calibration result measured by solar simulator.

Development of the Accuracy Improvement Algorithm of Geopositioning of High Resolution Satellite Imagery based on RF Models (고해상도 위성영상의 RF모델 기반 지상위치의 정확도 개선 알고리즘 개발)

  • Lee, Jin-Duk;So, Jae-Kyeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.106-118
    • /
    • 2009
  • Satellite imagery with high resolution of about one meter is used widely in commerce and government applications ranging from earth observation and monitoring to national digital mapping. Due to the expensiveness of IKONOS Pro and Precision products, it is attractive to use the low-cost IKONOS Geo product with vendor-provided rational polynomial coefficients (RPCs), to produce highly accurate mapping products. The imaging geometry of IKONOS high-resolution imagery is described by RFs instead of rigorous sensor models. This paper presents four different polynomial models, that are the offset model, the scale and offset model, the Affine model, and the 2nd-order polynomial model, defined respectively in object space and image space to improve the accuracies of the RF-derived ground coordinates. Not only the algorithm for RF-based ground coordinates but also the algorithm for accuracy improvement of RF-based ground coordinates are developed which is based on the four models, The experiment also evaluates the effect of different cartographic parameters such as the number, configuration, and accuracy of ground control points on the accuracy of geopositioning. As the result of a experimental application, the root mean square errors of three dimensional ground coordinates which are first derived by vendor-provided Rational Function models were averagely 8.035m in X, 10.020m in Y and 13.318m in Z direction. After applying polynomial correction algorithm, those errors were dramatically decreased to averagely 2.791m in X, 2.520m in Y and 1.441m in Z. That is, accuracy was greatly improved by 65% in planmetry and 89% in vertical direction.

  • PDF

In-network Query Processing using the Data-Loss Correction method in Data-Centric Storage Scheme (데이터 중심 저장 환경에서 소실 데이터 보정 기법을 이용한 인-네트워크 질의 처리)

  • Lee, Hyo-Joon;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06d
    • /
    • pp.337-342
    • /
    • 2010
  • 센서 네트워크에서 발생하는 데이터를 저장하고, 효율적으로 질의를 처리하는 기법에 대한 많은 연구가 이루어지고 있다. 대표적인 연구로 데이터 중심 저장 기법이 있다. 데이터 중심 저장 기법의 경우 질의를 효과적으로 처리하기 위해 수집한 데이터 값에 따라 저장 될 센서 노드를 지정하고, 질의 처리를 위해 질의에 해당하는 데이터를 저장하는 노드에서만 데이터를 수집한다. 하지만 노드의 결함이 발생하면 결함 노드에 저장 되어 있는 전체 데이터가 소실 됨에 따라 질의 결과 정확도가 저하 되는 문제점이 발생한다. 이러한 문제를 해결하기 위해, 본 논문에서는 데이터 중심 저장 기법에서 노드 결함에 따른 데이터 소실이 발생하여도 높은 정확도를 보이는 인-네트워크 질의 처리 기법을 제안한다. 데이터 소실이 발생 하였을 경우 선형 회귀 분석 기법을 이용하여 소실 된 영역에 해당하는 보정 모델을 생성하고, 이를 통해 가상의 데이터를 포함한 질의 결과를 반환한다. 제안하는 기법의 우수성을 보이기 위해 시뮬레이션을 통해 기존의 데이터 중심 저장 기법과 성능을 비교하였으며, 그 결과 평균 98% 이상의 질의 결과 정확도를 보였고, 질의 처리 시 기존 기법에 비교하여 약 80% 이상의 에너지 소모를 감소 시켰다.

  • PDF

Position Estimation of a Mobile Robot Based on USN and Encoder and Development of Tele-operation System using Internet (USN과 회전 센서를 이용한 이동로봇의 위치인식과 인터넷을 통한 원격제어 시스템 개발)

  • Park, Jong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.55-61
    • /
    • 2009
  • This paper proposes a position estimation of a mobile robot based on USN(Ubiquitous Sensor Network) and encoder, and development of tele-operation system using Internet. USN used in experiments is based on ZigBee protocol and has location estimation engine which uses RSSI signal to estimate distance between nodes. By distortion the estimated distance using RSSI is not correct, compensation method is needed. We obtained fuzzy model to calculate more accurate distance between nodes and use encoder which is built in robot to estimate accurate position of robot. Based on proposed position estimation method, tele-operation system was developed. We show by experiment that proposed method is more appropriate for estimation of position and remote navigation of mobile robot through Internet.

  • PDF

A Technique to Efficiently Place Sensors for Three-Dimensional Robotic Manipulation : For the Case of Stereo Cameras (로봇의 3차원 작업을 위한 효율적 센서위치의 결정기법 : 스테레오 카메라를 중심으로)

  • Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.80-88
    • /
    • 1999
  • This paper deals with the position determination problem of stereo camera systems used as a sensor for 3D robotic manipulation. Stereo cameras having parallel rays of sight and been set up on the same baseline are assumed. The distance between the sensor and the space measured is determined so as to get insensitive parameters to the uncertainty of control points used for calibration and to satisfy the error condition set by considering the repeatability of the robot. The baseline width is determined by minimizing the mutual effect of 3D positional error and stereo image coordinate error. Unlike existing techniques, the technique proposed here is developed without complicated constraints and modelling process of the object to be observed. Thus, the technique of this paper is more general and its effectiveness is proved by simulation.

  • PDF

Contrast Enhancement Method using Color Components Analysis (컬러 성분 분석을 이용한 대비 개선 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.707-714
    • /
    • 2019
  • Recently, as the sensor network technologies and camera technologies develops, there are increasing needs by combining two technologies to effectively observe or monitor the areas that are difficult for people to access by using the visual sensor network. Since the applications using visual sensors take pictures of the outdoor areas, the images may not be well contrasted due to cloudy weather or low-light time periods such as a sunset. In this paper, we first model the color characteristics according to illumination using the characteristics of visual sensors that continuously capture the same area. Using this model, a new method for improving low contrast images in real time is proposed. In order to make the model, the regions of interest consisting of the same color are set up and the changes of color according to the brightness of images are measured. The gamma function is used to model color characteristics using the measured data. It is shown by experimental results that the proposed method improves the contrast of an image by adjusting the color components of the low contrast image simply and accurately.