• Title/Summary/Keyword: 센서모델 보정

Search Result 124, Processing Time 0.019 seconds

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

Study of Prediction Model Improvement for Apple Soluble Solids Content Using a Ground-based Hyperspectral Scanner (지상용 초분광 스캐너를 활용한 사과의 당도예측 모델의 성능향상을 위한 연구)

  • Song, Ahram;Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.559-570
    • /
    • 2017
  • A partial least squares regression (PLSR) model was developed to map the internal soluble solids content (SSC) of apples using a ground-based hyperspectral scanner that could simultaneously acquire outdoor data and capture images of large quantities of apples. We evaluated the applicability of various preprocessing techniques to construct an optimal prediction model and calculated the optimal band through a variable importance in projection (VIP)score. From the 515 bands of hyperspectral images extracted at wavelengths of 360-1019 nm, 70 reflectance spectra of apples were extracted, and the SSC ($^{\circ}Brix$) was measured using a digital photometer. The optimal prediction model wasselected considering the root-mean-square error of cross-validation (RMSECV), root-mean-square error of prediction (RMSEP) and coefficient of determination of prediction $r_p^2$. As a result, multiplicative scatter correction (MSC)-based preprocessing methods were better than others. For example, when a combination of MSC and standard normal variate (SNV) was used, RMSECV and RMSEP were the lowest at 0.8551 and 0.8561 and $r_c^2$ and $r_p^2$ were the highest at 0.8533 and 0.6546; wavelength ranges of 360-380, 546-690, 760, 915, 931-939, 942, 953, 971, 978, 981, 988, and 992-1019 nm were most influential for SSC determination. The PLSR model with the spectral value of the corresponding region confirmed that the RMSEP decreased to 0.6841 and $r_p^2$ increased to 0.7795 as compared to the values of the entire wavelength band. In this study, we confirmed the feasibility of using a hyperspectral scanner image obtained from outdoors for the SSC measurement of apples. These results indicate that the application of field data and sensors could possibly expand in the future.

Performance Prediction for an Adaptive Optics System Using Two Analysis Methods: Statistical Analysis and Computational Simulation (통계분석 및 전산모사 기법을 이용한 적응광학 시스템 성능 예측)

  • Han, Seok Gi;Joo, Ji Yong;Lee, Jun Ho;Park, Sang Yeong;Kim, Young Soo;Jung, Yong Suk;Jung, Do Hwan;Huh, Joon;Lee, Kihun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • Adaptive optics (AO) systems compensate for atmospheric disturbance, especially phase distortion, by introducing counter-wavefront deformation calculated from real-time wavefront sensing or prediction. Because AO system implementations are time-consuming and costly, it is highly desirable to estimate the system's performance during the development of the AO system or its parts. Among several techniques, we mostly apply statistical analysis, computational simulation, and optical-bench tests. Statistical analysis estimates performance based on the sum of performance variances due to all design parameters, but ignores any correlation between them. Computational simulation models every part of an adaptive optics system, including atmospheric disturbance and a closed loop between wavefront sensor and deformable mirror, as close as possible to reality, but there are still some differences between simulation models and reality. The optical-bench test implements an almost identical AO system on an optical bench, to confirm the predictions of the previous methods. We are currently developing an AO system for a 1.6-m ground telescope using a deformable mirror that was recently developed in South Korea. This paper reports the results of the statistical analysis and computer simulation for the system's design and confirmation. For the analysis, we apply the Strehl ratio as the performance criterion, and the median seeing conditions at the Bohyun observatory in Korea. The statistical analysis predicts a Strehl ratio of 0.31. The simulation method similarly reports a slightly larger value of 0.32. During the study, the simulation method exhibits run-to-run variation due to the random nature of atmospheric disturbance, which converges when the simulation time is longer than 0.9 seconds, i.e., approximately 240 times the critical time constant of the applied atmospheric disturbance.