• Title/Summary/Keyword: 센서개수

Search Result 235, Processing Time 0.028 seconds

Estimation of Sensitivity Enhancements on Localized Surface Plasmon Resonance Sensor Using Dielectric Multilayer (유전체 다중층을 이용한 국소 표면 플라즈몬 공명 센서의 감도 향상에 관한 연구)

  • Ahn, Heesang;Kang, Tae Young;Oh, Jin-Woo;Kim, Kyujung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • In this research, we designed an LSPR sensor based on a thin-film multilayer comprising $TiO_2$ and $SiO_2$. The thickness of the overall substrate layer of the suggested multilayer LSPR sensor is limited to 100 nm, and the number of repeating $TiO_2$ and $SiO_2$ thin films is 1-4 within a limited thickness. Additionally, a nanowire structure with a gold thin film of 40 nm, height of 40 nm, period of 600 nm, and line width of 300 nm was formed on the multilayer. To design the variable wavelength-type SPR, the angle was fixed at $75^{\circ}$ and the wavelength was changed. We then simulated the system with the finite-element method (FEM) using Maxwell's equations. It was confirmed that the resonance wavelength became shorter as the number of multilayers increased when the refractive index was fixed. We found that the wavelength changes were more sensitive. However, no changes were observed when the number of the multilayers was three or higher.

Comparative Analysis of Sleep Stage according to Number of EEG Channels (뇌파 채널 개수 변화에 따른 수면단계 분석 비교)

  • Han, Heygyeong;Lee, Byung Mun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.140-147
    • /
    • 2021
  • EEG(electroencephalogram) are measured to accurately determine the level of sleep in various sleep examinations. In general, measurements are more accurate as the number of sensor channels increases. EEG can interfere with sleep by attaching electrodes to the skin when measuring. It is necessary for self sleep care to select the minimum number of EEG channels that take into account both the user's discomfort and the accuracy of the measurement data. In this paper, we proposed a sleep stage analysis model based on machine learning and conducted experiments for using from one channel to four channels. We obtained estimation accuracy for sleep stage as following 82.28% for one channel, 85.77% for two channels, 80.33% for three channels and 68.87% for four channels. Although the measurement location is limited, the results of this study compare the accuracy according to the number of channels and provide information on the selection of channel numbers in the EEG sleep analysis.

Connectivity-Based Distributed Localization in Wireless Sensor Network (무선 센서 네트워크에서 연결성 정보만을 이용하여 노드 위치를 추정하는 분산 알고리즘)

  • Kwon Oh-Heum;Song Ha-Joo;Kim Sook-Yeon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.525-534
    • /
    • 2005
  • We present several distributed algorithms for localizing nodes of a wireless sensor network. Our algorithms determine locations of nodes based on the connectivity between nodes. The basic idea behind our algorithms is to estimate distances between nearby nodes by counting their common neighbors. We analyze the performance of our algorithms experimentally. The results of experiments show that our algorithms achieve performance improvements upon the existing algorithms

A Latency-Secured Algorithm for Delay-Sensitive Large-Scale Sensor Networks (지연에 민감한 대규모 센서네트워크에서 지연시간 보장을 위한 알고리즘)

  • Hossen, Monir;Kim, Ki-Doo;Park, Young-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.457-465
    • /
    • 2010
  • When a sensor network is used for monitoring environments in large area or transmitting information in a u-City the number of nodes becomes very large. One of the problems with this application is the increased time delay, especially in reverse direction. In this paper, we propose a new algorithm that can minimize the latency of reverse packet in large sensor network. Analysis shows that the proposed scheme can reduce the latency by more than 90% when compared to Zigbee, while the energy consumption is maintained.

Numerical Investigation of Blackbody Design for Spaceborne Image Sensor Non-uniformity Characteristic Calibration (우주용 영상센서 출력특성 교정용 흑체 설계의 해석적 유효성 검토)

  • Kim, Hye-In;Choi, Pil-Gyeong;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • For calibration of the non-uniformity characteristics of the space-borne infrared (IR) sensor, a black body system shall provide estimated representative surface temperature at various reference temperatures by using the limited number of temperature sensors. The black body system proposed in this study has an I/F flange integrated on the rear side of the black body for installation of the heat pipe to transfer the residual heat after the black body heat-up. This design allows for obtaining a circular symmetric thermal contour of black body with low surface temperature gradient, leading to much easier representative temperature estimation. Additionally, this provides mechanically stable thermal I/F under launch and on-orbit environmental loads, as well as allowing a fail safe design by using the two heat pipes. Also, a highly accurate temperature estimation is possible even if the temperature sensors are attached on the surface on the rear side of the black body. The effectiveness of the thermal design of the proposed black body has been verified through the on-orbit thermal analysis. Based on the results, the representative surface temperature was estimated according to the number and position of the temperature sensors.

Development of a Lateral Mode Piezoelectric Oscillator Sensor to Detect Damages in a Structure (구조물 손상 탐지를 위한 경 방향 모드 압전 오실레이터 센서 개발)

  • Roh, Yong-Rae;Kim, Dong-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.125-132
    • /
    • 2006
  • This paper presents the feasibility of a lateral mode piezoelectric oscillator to detect damages in civil infrastructures. The lateral mode oscillator sensor is composed of an electronic feedback oscillator circuit and a piezoelectric lateral mode vibrator to be attached to a structure of interest. Damage to the structure causes a change in the impedance spectrum of the structure, which results in a corresponding change of a resonant frequency of the structure. The oscillator sensors can instantly detect the frequency change in a very simple manner. Feasibility of the piezoelectric oscillator sensor was verified in this work with a sample aluminum plate where artificial cracks of different lengths and number were imposed in sequence. Validity of the measurement was confirmed through comparison of the experimental data with the results of finite element analyses of a plate with cracks.

A Study on Damage Detection of Production Riser (생산 라이저의 손상 탐지에 대한 연구)

  • Je, Hyun-Min;Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.179-184
    • /
    • 2015
  • The purpose of this study is to provide appropriate methodology to ensure the safety and integrity of the production riser in offshore structure. In order to select integrity estimation methodology for production riser, level I and II Non-destructive Damage Evaluation (NDE) methods that were applied to existing structures are classified and reviewed. Numerical analysis is performed to verify the applicability and capability on damage detection of reviewed methods. As a result, the damage detection methodology using modal strain energy is more sensitive in detection of the damage than other methods. In practice, the number of sensors is limited due to the environmental and financial conditions. The impact on damage detection performance by reducing the number of sensors is systematically investigated through a series of numerical analyses and the results are discussed. The optimal number of sensor for the integrity estimation of production riser is recommended.

Collision Detection and Resolution Protocol for Intra-Vehicle Wireless Sensor Networks (차량 내 무선 센서 네트워크를 위한 충돌 검출 및 해결 프로토콜)

  • Choi, Hyun-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.116-124
    • /
    • 2016
  • This paper proposes a medium access control protocol for collision detection and resolution when a large number of sensor nodes transmits data in vehicle. The proposed protocol selects a random collision detection (CD) slot after data transmission, suspends its transmission and senses the channel to check whether a collision occurs by the detection of both energy level and jam signal. The proposed scheme uses multiple CD phases and in each CD phase, colliding stations are filtered and only surviving stations compete again in the next CD phase; thus, the collision resolution probability significantly increases. Simulation results show that the proposed protocol using the multiple CD phases has significantly better throughput than the conventional protocol. In addition, according to the number of CD phases and the number of CD slots per phase, the throughput aspect of the proposed scheme is investigated and the optimal parameters are derived.

Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network (무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향)

  • Pudasaini, Subodh;Kang, Moon-Soo;Shin, Seok-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.697-705
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.

Enhancement on 3 DoF Image Stitching Using Inertia Sensor Data (관성 센서 데이터를 활용한 3 DoF 이미지 스티칭 향상)

  • Kim, Minwoo;Kim, Sang-Kyun
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.51-61
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from an inertia sensor to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw angles, pitch angles, roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data.