• Title/Summary/Keyword: 세포 이미지 분석

Search Result 56, Processing Time 0.024 seconds

An Efficient Segmentation System for Cell Images By Classifying Distributions of Histogram (히스토그램 분포 분류를 통한 효율적인 세포 이미지 분할 시스템)

  • Cho, Migyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.431-436
    • /
    • 2014
  • Cell segmentation which extracts cell objects from background is one of basic works in bio-imaging which analyze cell images acquired from live cells in cell culture. In the case of clear images, they have a bi-modal histogram distribution and segmentation of them can easily be performed by global threshold algorithm such as Otsu algorithm. But In the case of degraded images, it is difficult to get exact segmentation results. In this paper, we developed a cell segmentation system that it classify input images by the type of their histogram distribution and then apply a proper segmentation algorithm. If it has a bi-modal distribution, a global threshold algorithm is applied for segmentation. Otherwise it has a uni-modal distribution, our algorithm is performed. By experimentation, our system gave exact segmentation results for uni-modal cell images as well as bi-modal cell images.

Visual Cell : Image Analysis and Visual Retrieval System for Biology Cell Image Bigdata (Visual Cell : 바이오세포 이미지 빅데이터를 위한 이미지 분석 및 시각적 검색 시스템)

  • Park, Beomjun;Jo, Sunhwa;Lee, Suan;Shin, Jiwoon;Yoo, Hyuk Sang;Kim, Jinho
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • The extracellular matrix, which provides the structural and biochemical support of surrounding cells, is a cell physiological modulator that controls cell division and differentiation. In the bio sector, the company produces Scapold, a three-dimensional support for tissue engineering, and cultivates stem cells in the produced Scapold to be transplanted into animals to assess tissue regeneration. This depends on components such as collagen in the tissue. Therefore, it is very important to identify the inclusion rate and distribution of components in the tissue, and the data are obtained by analyzing the color of the dyed tissue image. The process from image collection to analysis is costly, and the data collected and analyzed are managed in different formats by different research institutions. Therefore, data integration management and analysis results search are not being performed. In this paper, we establish a database that can manage relevant bigdata in an integrated manner, and propose a bio-image integrated management and retrieval system that can be searched based on color, an important analytical measure in this field of study.

  • PDF

Automated Bacterial Cell Counting Method in a Droplet Using ImageJ (이미지 분석 프로그램을 이용한 액적 내 세포 계수 방법)

  • Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.247-257
    • /
    • 2023
  • Precise counting of cell number stands in important position within clinical and research laboratories. Conventional methods such as hemocytometer, migration/invasion assay, or automated cell counters have limited in analytical time, cost, and accuracy., which needs an alternative way with time-efficient in-situ approach to broaden the application avenue. Here, we present simple coding-based cell counting method using image analysis tool, freely available image software (ImageJ). Firstly, we encapsulated RFP-expressing bacteria in a droplet using microfluidic device and automatically performed fluorescence image-based analysis for the quantification of cell numbers. Also, time-lapse images were captured for tracking the change of cell numbers in a droplet containing different concentrations of antibiotics. This study confirms that our approach is approximately 15 times faster and provides more accurate number of cells in a droplet than the external analysis program method. We envision that it can be used to the development of high-throughput image-based cell counting analysis.

Optical Microscope Image Processing for Automated Cells Counting (세포 자동 계수를 위한 광학현미경 이미지 처리)

  • Cho, Mi-Gyung;Moon, Sang-Jun;Shim, Jae-Sool
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2493-2499
    • /
    • 2011
  • With growth of nano-bio industry, it is of significant importance to develop an automated system to exploit cell behaviors, including migration, mitosis, apoptosis, shape deformation of individual cells and their interactions among cells in the process of cell growth. In this paper, we proposed preprocessing techniques, a classification method which classifies clusters (overlapping multiple cells) from cells and an automated method which counts the number of cells and clusters in order to analyze 2D or 3D deformations of the cells in the real-time images from microscope in the cell culture. We conducted the 3T3 cell images taken from each thirty-minute interval. It showed the average 99.8% accuracy automatically for separating cells and clusters.

G-Render: Grid-based Image Processing System (G-Render: 그리드 기반 이미지 처리 시스템)

  • Kim, Eunsung;Jung, Im Young;Choi, Hyung Jun;Yeom, Heon-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.690-692
    • /
    • 2007
  • 기존의 2 차원 이미지를 통한 세포 분석은 단지 세포의 단면만을 볼 수 있기 때문에 정확한 구조를 파악하기 힘들다. 본 논문에서는 그리드 기술을 이용하여 2 차원 이미지들을 세포 구조에 대한 더욱 정확한 이해 및 연구 능률의 향상을 도모할 수 있는 3 차원 이미지로 재구성하는 시스템을 개발하였다. 이 시스템은 고성능 이미지 처리를 위해서 계산 그리드를 이용하며, 화질 개선을 위한 전처리 기술, 자동 영상 정렬 기술, 효과적인 삼차원 재구성 기술과 같은 다양한 이미지 처리 알고리즘 및 preStageIn, BgUpload, delegated preprocessing 등과 같은 데이터 전송 최적화 기술 등을 제공한다. 또한, 다양한 이미지 뷰어 기능 및 DirectX 를 이용한 3 차원 렌더링 기능을 제공한다.

Automated Cell Counting Method for HeLa Cells Image based on Cell Membrane Extraction and Back-tracking Algorithm (세포막 추출과 역추적 알고리즘 기반의 HeLa 세포 이미지 자동 셀 카운팅 기법)

  • Kyoung, Minyoung;Park, Jeong-Hoh;Kim, Myoung gu;Shin, Sang-Mo;Yi, Hyunbean
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1239-1246
    • /
    • 2015
  • Cell counting is extensively used to analyze cell growth in biomedical research, and as a result automated cell counting methods have been developed to provide a more convenient and means to analyze cell growth. However, there are still many challenges to improving the accuracy of the cell counting for cells that proliferate abnormally, divide rapidly, and cluster easily, such as cancer cells. In this paper, we present an automated cell counting method for HeLa cells, which are used as reference for cancer research. We recognize and classify the morphological conditions of the cells by using a cell segmentation algorithm based on cell membrane extraction, and we then apply a cell back-tracking algorithm to improve the cell counting accuracy in cell clusters that have indistinct cell boundary lines. The experimental results indicate that our proposed segmentation method can identify each of the cells more accurately when compared to existing methods and, consequently, can improve the cell counting accuracy.

Graded Noise Elimination and Cluster Boundary Extraction in Confocal Sliced Images (공초점 단층 이미지에서 수준별 잡음제거와 클러스터 경계선 추출)

  • Cho, Mi-Gyung;Kim, Jin-Seok;Shim, Jae-Sool
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2697-2704
    • /
    • 2011
  • In tissue engineering area, researchers observe symbiotic relationship such as proliferation, interaction, division apoptosis with time between cells in process of the 3D cell culture in hydrogels. The 3D cell culture process can be taken photographs into sliced images using confocal microscope. Symbiotic mechanism and changes of cell behaviors can be observed and analyzed from the images acquired by confocal microscope. In this paper, we proposed and developed graded noise elimination method and cluster boundary extraction method to extract boundaries information from sliced confocal images acquired in process of the 3D cell culture in hydrogels. The experiment based algorithm showed excellent performance for eliminating noises that have very small millet-shaped size. It is also showed to extract exact boundaries information for even complex clusters.

Quantitative Analyses of Cells using Photoshop after the H&E Staining of the Synovia of Osteoarthritis and Rheumatoid Arthritis Patients (H&E 염색 이미지의 포토샵 분석을 이용한 골관절염과 류마티스 관절염 활막 세포의 정량 분석)

  • Park, Jin-Ah;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1034-1040
    • /
    • 2012
  • Synovium is the soft tissue that lines the non-cartilaginous surfaces within joints. It has been reported that synovial cells are activated during the pathogenesis of rheumatoid arthritis. In this study, we quantitate and compare the cellular composition of synovia derived from individuals with non-inflammatory osteoarthritis (OA) and those with inflammatory rheumatoid arthritis (RA). Synovia from OA (n=8) and RA (n=5) patients were used for hematoxylin and eosin (H&E) staining. A light microscopic examination has shown that RA synovia were morphologically thickened and hypertrophied as compared to OA synovia. We also performed an immunohistochemistry (IHC) analysis to classify cell types in the synovia using CD68, CD90, or PGP9.5 markers. As a result, we obtained quantitative data regarding the cell populations, which are macrophages in the lining layer and FLSs in the subintimal layer of the synovium. Further Photoshop analyses of the H&E images could allow the counting of the number and layer of the cells in the synovium. The number and layers of the macrophage cells were increased in the lining layer of the RA synovia as compared to the OA synovia. FLS cells also were increased in the subintimal layer of RA synovia. Therefore, quantification of the H&E stained images via Photoshop is a possible analysis protocol for synovium study. This quantitation also supports the idea that the increases in cell number and cell activation are important processes for RA pathogenesis.

An Ellipse Fitting based Algorithm for Separating Overlapping Cells (겹친 세포 분리를 위한 타원 근사 기반 알고리즘)

  • Cho, Mi-Gyung;Shim, Jae-Sool
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.909-912
    • /
    • 2012
  • An automated cell tracking system is automatically to analyze and track changes of cell behaviors in time-lapse cell images acquired from microscope in the cell culture. In this paper, we proposed and developed an ellipse fitting based algorithm for separating very small size overlapping cells in a cell image consisted of thousands or ten thousands cells. We were extracted contours of clusters and divided them into line segments and then produced their fitted ellipses for each line segment. By experimentations, our algorithm was separated clusters with average 91% precision for two overlapping cells and average 84% precision for three overlapping cells respectively.

  • PDF

Quantitative and cell count analysis of Breat cancer cell nuclei by Immunohisto-chemical stained tissue section (면역조직화학염색에 의한 유방암 세포핵의 정량적 분석과 세포수에 의한 분석)

  • 허민권;최흥국;서정욱
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.243-247
    • /
    • 1998
  • 전자현미경 영상인 유방암 조직세포의 암 분포 정도를 알기 위해, 조직세포중 암이 퍼진 부분과 그렇지 않은 부분에 대해 정량적 분석과 세포수에 의한 분석을 비교하여 보았다. 유방암 조직세포의 면역조직화함염색에서 암이 있는 세포핵은 갈색으로 나타났고, 그렇지 않은 세포는 푸른색으로 나타났다. 이것은 환자를 진단하고 예지하는데 있어서 중요한 요인으로 작용하지만 지금까지는 의사의 주관적인 생각이 다분히 포함된 판단에 의존할 수 밖에 없었다. 의료영상이미지의 시각적 표현을 위해 RGB칼라를 HLS칼라로 변환하여 사용하였으며, 이것은 시각적으로 좀 더 쉽게 갈색세포핵과 푸픈색 세포핵을 구분하게 해 주었다. 두 세포핵을 분리하기 위해 히스트그램의 임계치와 Box classification의 두 알고리즘의 사용하여 추출하였다. 그리고 추출한 세포핵들에 대해 각각 정량적인 분석과 세포수에 의한 분석을 하였다. 이러한 실험은 시각적 병리정밀검사에 좋은 보조도구로 사용될 수 있을 것이다.

  • PDF