DOI QR코드

DOI QR Code

Quantitative Analyses of Cells using Photoshop after the H&E Staining of the Synovia of Osteoarthritis and Rheumatoid Arthritis Patients

H&E 염색 이미지의 포토샵 분석을 이용한 골관절염과 류마티스 관절염 활막 세포의 정량 분석

  • Park, Jin-Ah (Department of Biological Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim, Keun-Cheol (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
  • 박진아 (강원대학교 자연과학대학 생명과학과) ;
  • 김근철 (강원대학교 자연과학대학 생명과학과)
  • Received : 2012.04.27
  • Accepted : 2012.07.27
  • Published : 2012.08.30

Abstract

Synovium is the soft tissue that lines the non-cartilaginous surfaces within joints. It has been reported that synovial cells are activated during the pathogenesis of rheumatoid arthritis. In this study, we quantitate and compare the cellular composition of synovia derived from individuals with non-inflammatory osteoarthritis (OA) and those with inflammatory rheumatoid arthritis (RA). Synovia from OA (n=8) and RA (n=5) patients were used for hematoxylin and eosin (H&E) staining. A light microscopic examination has shown that RA synovia were morphologically thickened and hypertrophied as compared to OA synovia. We also performed an immunohistochemistry (IHC) analysis to classify cell types in the synovia using CD68, CD90, or PGP9.5 markers. As a result, we obtained quantitative data regarding the cell populations, which are macrophages in the lining layer and FLSs in the subintimal layer of the synovium. Further Photoshop analyses of the H&E images could allow the counting of the number and layer of the cells in the synovium. The number and layers of the macrophage cells were increased in the lining layer of the RA synovia as compared to the OA synovia. FLS cells also were increased in the subintimal layer of RA synovia. Therefore, quantification of the H&E stained images via Photoshop is a possible analysis protocol for synovium study. This quantitation also supports the idea that the increases in cell number and cell activation are important processes for RA pathogenesis.

활막조직은 관절부위에 존재하는 비연골성의 얇은 세포층으로 구성되어 있으며, 류마티스 관절염 등에서 활성화 되어진다. 우리는 골관절염(n=8)과 류마티스 관절염(n=5)에서 유래한 활막조직을 대상으로 활막조직내의 세포를 정량화하고 세포성분들을 비교 분석하고자 하였다. 활막조직을 H&E 염색한 후 광학현미경으로 관찰하였을 때 류마티스 관절염의 활막조직은 골관절염에 비해 형태적으로 두터워졌으며 비후된 양상이었다. 또한 CD68, CD90, PGP9.5 등과 마커들을 이용하여 IHC 분석을 수행한 결과 활막조직의 내막층과 내막하층에 존재하는 세포들을 특성을 분한 결과 내막층에는 대식세포가 집중적으로 분포하며, 내막하층에는 대식세포와 섬유아세포 유사 활막세포(FLS)가 존재한다는 사실을 알 수 있었다. H&E 이미지를 포토샵 프로그램을 이용하여 반전시켜 내막층과 내막하층 부위별로 세포계수 및 세포층계수를 수행하였다. 내막층 분석 결과 류마티스 관절염의 활막조직의 골괄절염보다 대식세포의 수와 층이 현저하게 증가된 것을 확인할수 있었다. 또한 류마티스 관절염의 활막조직의 내막하층분석결과 섬유아세포 유사 활막세포의 수적인 증가를 계수 할 수 있었다. 또한 류마티스 관절염의 경우 활막의 비후가 심하기 때문에 혈관의 위치가 내막층으로부터 상대적으로 멀리 위치하고 있음을 알 수 있었다. 그러므로 H&E 염색 이미지의 포토샵 분석을 이용한 골관절염과 류마티스 관절염 활막조직에 대한 정량 분석 방법은 류마티스 관절염의 발병과정에서 세포들이 활성화된다는 사실을 증명하는데 유용할 것으로 사료된다.

Keywords

References

  1. Abramson, S. B. and Attur, M. 2009. Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 11, 227. https://doi.org/10.1186/ar2655
  2. D'Arcy, P., Ryan, B. A. and Brodin, B. 2009. Reactivation of p53 function in synovial sarcoma cells by inhibition of p53-HDM2 interaction. Cancer Lett. 275, 285-292. https://doi.org/10.1016/j.canlet.2008.10.030
  3. Farahat, M. N., Yanni, G., Poston, R. and Panayi, G. S. 1993. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann. Rheum. Dis. 52, 870-875. https://doi.org/10.1136/ard.52.12.870
  4. Fearon, U., Griosios, K., Fraser, A., Reece, R., Emery, P., Jones, P. F. and Veale, D. J. 2003. Angiopoietins, growth factors, and vascular morphology in early arthritis. J. Rheumatol. 30, 260-268.
  5. Fox, D. A., Gizinski, A., Morgan, R. and Lundy, S. K. 2010. Cell-cell interactions in rheumatoid arthritis synovium. Rheum. Dis. Clin. North. Am. 36, 311-323. https://doi.org/10.1016/j.rdc.2010.02.004
  6. Gruber, H. E., Ingram, J. A., Hoelscher, G. L., Zinchenko, N., Norton, H. J. and Hanley, E. N. Jr. 2009. Matrix metalloproteinase 28, a novel matrix metalloproteinase, is constitutively expressed in human intervertebral disc tissue and is present in matrix of more degenerated discs. Arthritis Res. Ther. 11, R184. https://doi.org/10.1186/ar2876
  7. Kim, W. U., Kang, S. S., Yoo, S. A., Hong, K. H., Bae, D. G., Lee, M. S., Hong, S. W., Chae, C. B. and Cho, C. S. 2006. Interaction of Vascular Endothelial Growth Factor 165 with Neuropilin-1 Protects Rheumatoid Synoviocytes from Apoptotic Death by Regulating Bcl-2 Expression and Bax Translocation. J. Immunol. 177, 5727-5735. https://doi.org/10.4049/jimmunol.177.8.5727
  8. Kunisch, E., Fuhrmann, R., Roth, A., Winter, R., Lungershausen, W. and Kinne, R. W. 2004. Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann. Rheum. Dis. 63, 774-784. https://doi.org/10.1136/ard.2003.013029
  9. Lee, S. H. 2005. Role of synovial fibroblasts in rheumatoid arthritis. Hanyang Medical Reviews 25, 36-42.
  10. Liu, H., Perlman, H., Hoffmann, A., Thimmapaya, B. and Richard, M. P. 2000. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kB but not C/EBPb or c-Jun. J. Immunol. 165, 7199-7206. https://doi.org/10.4049/jimmunol.165.12.7199
  11. Lundy, S. K., Sarkar, S., Tesmer, L. A. and Fox, D. A. 2007. Cells of the synovium in rheumatoid arthritis. T slynphocytes. Arthritis Res. Ther. 9, 202. https://doi.org/10.1186/ar2107
  12. Myers, S. L., Flusser, D., Brandt, K. D. and Heck, D. A. 1992. Prevalence of cartilage shards in synovium and their association with synovitis in patients with early and endstage osteoarthritis. J. Rheumatol. 19, 1247-1251.
  13. Nakano, K., Yamaoka, K., Hanami, K., Saito, K., Sasaguri, Y., Yanagihara, N., Tanaka, S., Katsuki, I., Matsushita, S. and Tanaka, Y. 2011. Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J. Immunol. 186, 3745-3752. https://doi.org/10.4049/jimmunol.1002475
  14. Pessler, F., Dai, L., Diaz-Torne, C., Gomez-Vaquero, C., Paessler, M. E., Zheng, D. H., Einhorn, E., Range, U., Scanzello, C. and Schumacher, H. R. 2008. The synovitis of ''on-inflammatory''orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis. Ann. Rheum. Dis. 67, 1184-1187. https://doi.org/10.1136/ard.2008.087775
  15. Singh, J., Arayssi, T., Duray, P. and Schumacher, H. 2004. Immunohistochemistry of normal human knee synovium: a quantitative study. Ann. Rheum. Dis. 63, 785-790. https://doi.org/10.1136/ard.2003.013383
  16. Smith, J. B. and Haynes, M. K. 2002. Rheumatoid arthritismolecular understanding. Ann. Intern. Med. 136, 908-912. https://doi.org/10.7326/0003-4819-136-12-200206180-00012