• Title/Summary/Keyword: 세포사멸사

Search Result 62, Processing Time 0.025 seconds

Effect of Angelica keiskei Extract on Apoptosis of MDA-MB-231 Human Breast Cancer Cells (신선초 추출물이 인체 유방암 세포 MDA-MB-231의 세포 사멸에 미치는 영향)

  • Jeong, Yu-Jin;Kang, Keum-Jee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1654-1661
    • /
    • 2011
  • We investigated the effect of Angelica keiskei ethanol (AKE) extract on cell death in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were cultured in the presence 125, 150 and 175 ${\mu}g$/mL concentrations of AKE for 24 hours. MTT assays demonstrated that mitochondrial dehydrogenase activities decreased in a dose-dependent manner in MDA-MB-231 cells (p<0.05). In contrast, the proportion of dual staining with Hoechst 33342/ethidium bromide(EtBr) for cell death increased in a dose-dependent manner in MDA-MB-231 cells (p<0.05). In particular, the levels of cell death caused by apoptotic program showed marked increases in the 150 and 175 ${\mu}g$/mL AKE groups, as revealed by flow cytometry. An apoptotic suppressor gene, Bcl-2, significantly decreased at the transcript level (p<0.05). The expression levels of proapoptotic genes, both Bax and caspase 3 significantly increased (p<0.05). Furthermore, the ratio of Bcl-2/Bax mRNA which is considered to be an important indicator of apoptosis, significantly decreased in a dose-dependent manner (p<0.05). These results taken together indicate that, the AKE extract used in this study induces cell death in MDA-MB-231 human breast cancer cells.

A Cyclin-Dependent Kinase Inhibitor, p16^{INK4A}, Induces Apoptosis in The Human Cancer Cells. (Cyclin-dependent Kinase저해 단백질 p16^{INK4A}의 인체 암세포에서의 세포사멸 유도 활성)

  • 김민경;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Previously, we synthesized a novel Cyclin-dependent kinase inhibitor, MCS-5A. Also, we investigated the involvement of cell cycle regulatory events during MCS-5A-mediated apoptosis in HL-60(+p16/-p53) cells with up-regulation of p16 protein expression. In contrast, apoptosis was not observed in A549(-p16/+p53) cells. Therefore we propose that $p16^{INK4A}$ is a key enzyme for inducing apoptosis. In the present studies, we have explored the mechanism of $p16^{INK4A}$ -mediated cytotoxicity and the role of p16.sup INK4A/ overexpression in the induction of apoptosis in human tumor cells. The tumor suppressor gene $p16^{INK4A}$ is known as a cyclin-dependent kinase inhibitor (CKI) and cell cycle regulator. We expressed wild type $p16^{INK4A}$ in pcDNA3.1 vector and then transfected into non-small cell lung cancer (NSCLC) cell expressing different statue of p16$^{INK4A}$, p53 gene〔A549(-p16/+p53), H1299(-p16/-p53) and HeLa(+pl6/+p53) cell line〕. TUNEL assay (including propidium iodide staining following transfection of these cell line with pcDNA3.1-pl6) indicate that p16$^{INK4A}$-mediated cytotoxicity was associated with apoptosis. This is supported by studies demonstrating an induction of caspase 3 cleavage due to the transfection of A549, H1299 and HeLa cells with pcDNA3.1-pl6. These results suggest that p16$^{INK4A}$ has a new function of inducing apoptosis which is not related with the function of tumor suppressor gene p53.

Neuroprotective Effects of Scrophulariae Radix on Cerebral Ischemia in Mongolian Gerbils (Mongolian gerbil의 뇌허혈에 대한 현삼의 신경보호효과)

  • Lee, Jun-Hwan;Song, Mi-Yeon;Lee, Jong-Soo;Kim, Sung-Su;Shin, Hyun-Dae;Chung, Seok-Hee
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2008
  • Objectives : Cerebral ischemia resulting from transient or permanent occlusion of cerebral arteries leads to neuronal cell death and eventually causes neurological impairments. Scrophulariae radix is the roots of Scrophularia buergeria. In the present study, we investigated the effects of the aqueous extract of Scrophulariae radix on apoptotic cell death in the hippocampal dentate gyrus following transient global ischemia in gerbils. Methods : For this study, step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were performed. Results : The present results showed that apoptotic cell death in the hippocampal dentate gyrus was significantly increased following transient global ischemia in gerbils. Treatment with the aqueous extract of Scrophulariae radix suppressed the ischemia-induced apoptosis in the dentate gyrus and thus facilitated the recovery of short-term memory impairment induced by ischemic cerebral injury. Conclusions : Here in this study, we have shown that Scrophulariae radix has a positive effect on-and possesses protective qualities against ischemia-induced apoptotic neuronal cell death, and it can be used for the treatment of ischemic brain diseases.

Inhibitory Effects of Ethanol Extract of Rhodiola Sacra on Endoplasmic Reticulum Stress in Neuro-2A Cells (설치류 Neuro-2A 신경세포에서 홍경천 에탄올 추출물의 소포체 스트레스 억제효과)

  • Jo, Nam-Eun;Song, Young-soon
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.265-270
    • /
    • 2019
  • Growing evidence suggests that mediating apoptotic cell death of ER stress plays an important role in pathological development of neurodegenerative diseases including Alzheimer's disease. The ethanol extract of Rodiola sacra (ERS) investigates whether ER stress protects neuroinvasive neuro-2A cells from homocysteine (Hcy) cell death and ER stress. In neuronal cells, Hcy markedly decreased the viability of the cells and induced the death of Annexin V-positive cells as confirmed by MTT assay. The Hcy cell viability and apoptotic loss pretreated with ERS were attenuated, and Hcy showed stress in the expression of C / EBP homologous protein, 78-kDa glucose regulatory protein and the junction of X-box binding protein-1 (xbp1) mRNA. ESR decreased Hcy-induced mRNA binding, GRP78 and CHOP cells induced Hcy-induced ER stress and apoptosis, and Western blotting revealed expression of heme oxygenase-1 and HO-1 enzyme activity Inhibition is indicative of therapeutic value for neurodegenerative diseases such as decreased cell death by hemin.

Novel Gap Junction Molecules, Connexin 37, Enhances the Bystander Effect in HSVtk/GCV Gene Therapy (Herpes Simplex Virus thymidine Kinase/Ganciclovir 유전자 치료에서 새로운 간격결합분자 Connexin 37에 의한 방관자 효과의 증가)

  • Kim, Sun Young;Yi, Ho Keun;Lee, Jung Chang;Hwang, Dong Jin;Hwang, Pyoung Han;Lee, Dae Yeol;Cho, Soo Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.6
    • /
    • pp.541-547
    • /
    • 2003
  • Purpose : Gap junction intercellular communication(GJIC) is an important mechanism of the bystander effect in herpes simplex thymidine kinase/ganciclovir(HSVtk/GCV) gene therapy Therefore, we attempted to enhance the bystander effect in vitro by exogenous overexpressing connexin 37(Cx37) in cells to increase GJIC. Methods : NIH3T3 cells were transfected with the Cx37 and HSVtk gene or the HSVtk gene alone by the calcium phosphate method, and we detected their expression from these cells by RT-PCR. GCV-mediated cytotoxicity and the bystander effect of each transfectant was then assessed and compared. Results : Cells transfected with HSVtk became sensitive to low concentration of GCV. We found significantly increased cytotoxicity in HSVtk/GCV gene therapy after introduction of the HSVtk and Cx37 genes together compared with the cytotoxicity seen after introduction of the HSVtk gene in vitro. Co-expression of the HSVtk and Cx37 genes potentiates HSVtk/GCV gene therapy through the bystander effect. Conclusion : These results indicated that the increase of GJIC using Cx37 have potentiated the bystander effect of HSVtk/GCV therapy, and may be a new approach to improve response in suicidal cancer gene therapy.

TRAIL and Effect of Irradiation on Apoptosis of Cancer Cells (TRAIL과 방사선 조사가 암세포의 사멸에 미치는 효과)

  • Lee, Jaeseob;Jang, Seongjoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.387-393
    • /
    • 2016
  • Tumor using the efficient concomitant radiotherapy and chemotherapy to remove, prior to surgery and, either reduce the size of the tumor after surgery, or was can be made smaller, Or excised tumor, in a way to be removed, most conventional surgical method is surgical excision surgery therapy. And methods reduce or tumor size, or smaller, chemotherapy can kill tumor is administered selectively anticancer agent which increases the radioactive susceptible to tumor cells, sensitive to susceptibility to radiation are those which make it possible to respond to, either TRAIL methods of various biological cytostatic can deform the protein, by deforming the structure of the protein help to cell death it is known. In this paper, the HCT-116 cells thought to be a cancer cell to analyze the interaction of TRAIL and radiation. Experimental results, single use of TRAIL and radiation, results were compared with the control group, it was found to have no significant effect on each cell proliferation and apoptosis. Conversely treated with TRAIL, when treated in parallel radiation, it was possible to know that the HCT-116 cells significantly apoptosis occurs, The proportion of G1 ratio G0 also was found to have increased. TRAIL conclusion is increased apoptosis radiation defensive cells can know that increased radiosensitivity, also possible to alter the cell cycle, reduce cell proliferation ability stepwise it was possible. TRAIL is increased apoptosis, decreased cell proliferative capacity, it is considered to be possible to use as a radiation sensitizer.

Apoptotic Effect of Pinosylvin at a High Concentration Regulated by c-Jun N-Terminal Kinase in Bovine Aortic Endothelial Cells (혈관내피세포에서 c-Jun N-terminal kinase에 의해 조절되는 세포사멸에 고농도의 피노실빈이 미치는 효과)

  • Song, Jina;Park, Jinsun;Jeong, Eunsil;So, A-Young;Pyee, Jaeho;Park, Heonyong
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.416-424
    • /
    • 2015
  • Pinosylvin is a stilbenoid found in the Pinus species. Pinosylvin at ~pM to ~nM concentrations induces cell proliferation, cell migration and anti-inflammatory activity in endothelial cells. However, it was recently reported that pinosylvin at high concentrations (50 to 100 μM) induces cell death in bovine aortic endothelial cells. In this study, we conducted a series of experiments to discover how pinosylvin at a high concentration (50 μM) induces endothelial cell death. Pinosylvin at the high concentration was shown to induce endothelial cell apoptosis through enhancing caspase-3 activity, flip-flop of phosphatidyl serine, and nuclear fragmentation. We found that pinosylvin at the high concentration additively increased caspase-3 activity enhanced by serum-starvation or treatment with 100 μM etoposide. We also determined that pinosylvin at the high concentration promoted activations of c-Jun N-terminal kinase (JNK) and endothelial nitric oxide synthetase (eNOS). We further ran a series of experiments to find out which signaling molecule plays a critical role in the pinosylvin-induced apoptosis. We finally found that SP-600125, a JNK inhibitor, had an inhibitory effect on the pinosylvin-induced endothelial cell death, but L-NAME, an eNOS inhibitor, had no effect. These data indicate that JNK is involved in the pinosylvin-induced apoptosis. Collectively, pinosylvin at high doses induces cell apoptosis via JNK activation.

Arrest of Cell Growth by Inhibition of Endogenous Reverse Transcription Activity in Cancer and Somatic Cell Lines (사람의 암세포주 및 정상세포주에서 역전사 효소의 억제에 의한 세포 성장의 제한)

  • Mi-Jeong Kim;Sung-Ho Lee;Jong-Kuen Park;Byeong-Gyun Jeon
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.365-376
    • /
    • 2024
  • The present study assessed the cytotoxic effects on cell growth and senescence in human cancer (A-549, AGS, HCT-116, MDA-MB-231, and U 87-MG) and normal (MRC-5 and mesenchymal stem cells) cell lines treated with efavirenz (EFA), an inhibitor of non-nucleoside reverse transcriptase (RTase). Following EFA treatment, the half-maximal inhibitory concentration (IC50) values were approximately 15 µM, and the IC50 value was significantly (p<0.05) lower in the cancer cell lines, compared to normal cell lines. After determining the IC50 values against EFA, each cell line was treated with 15 µM EFA for up to one week. Significant (p<0.05) decreases in endogenous RTase and telomerase activity were observed in the cancer cell lines. RTase and telomerase activity were absent or detected at very low levels in both EFA-untreated and treated MRC-5 and MSC normal cells. The cell doubling time (CDT) was also significantly (p<0.05) prolonged by the decreased cell growth rate in the EFA-treated cancer cell lines compared to the untreated cell lines. Furthermore, EFA-treated cancer cells displayed a high number of cells with a high intensity of senescence-associated ß-galactosidase activity (SA-ß-gal activity), compared to the untreated cells. The present study showed that inhibition of RTase activity induces cellular senescence and arrests cell growth in human cancer cell lines; however, normal cell lines showed greater tolerance against EFA. RTase treatment could offer optional chemotherapy for cancer treatment in human cancer cell lines with high RTase activity.

Multiple Molecular Targets of Sensitizers in Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL/Apo2L)-Mediated Apoptosis (TRAIL 매개의 세포사멸 유도를 위한 다양한 분자적 타깃)

  • Min, Kyoung-Jin;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1641-1651
    • /
    • 2011
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a recently identified member of the TNF ligand family that can initiate apoptosis through the activation of their death receptors. TRAIL has been paid attention as a potential anti-cancer drug, because it selectively induces apoptosis in tumor cells in vitro and in vivo but not in most normal cells. However, recent studies have shown that some cancer cells including malignant renal cell carcinoma and hepatocellular carcinoma, are resistant to the apoptotic effects of TRAIL. Therefore, single treatment with TRAIL may not be sufficient for the treatment of various malignant tumor cells. Understanding the molecular mechanisms of TRAIL resistance and identification of sensitizers capable of overcoming TRAIL resistance in cancer cells is needed for the establishment of more effective TRAIL-based cancer therapies. Chemotherapeutic drugs induce apoptosis and the upregulation of death receptors or activation of intracellular signaling pathways of TRAIL. Numerous chemotherapeutic drugs have been shown to sensitize tumor cells to TRAIL-mediated apoptosis. In this study, we summarize biological agents and drugs that sensitize tumors to TRAIL-mediated apoptosis and discuss the potential molecular basis for their sensitization.

Apoptosis and Cell Proliferation in Gastric Adenoma and Adenocarcinoma (위샘종과 위샘암종에서의 세포자멸사와 세포증식)

  • Lee, Dong-Soo;Kang, Sang-Bum;Lee, Seung-Woo;Nam, Soon-Woo;Yoo, Young-Kyung;Han, Sok-Won
    • Journal of Gastric Cancer
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 2006
  • Purpose: Cancer is a genetic disease caused by alterations in key regulators of cell growth and cell turnover, We investigated apoptotic cell death and cell proliferation in gastric adenomas and adenocarcinomas. Materials and Methods: The TdT-mediated dUTP-biotin nick end labelling (TUNEL) method and immunohistochemistry for Ki-67 were peformed, using paraffin-embedded tissues of 41 gastric adenomas and 100 gastric adenocarcinomas. These results were compared with histopathologic parameters. Results: The Ki-67 labelling index was higher in adenocarcinomas than in adenomas and the apoptotic index was higher in adenomas than in adenocarcinomas. There were no significant difference between the apoptotic index/Ki-67 labelling index and clinicopathological parameters. Conclusion: We propose that cell proliferation is more closely associated with gastric adenocarcinomas than apoptosis is, but that neither has any clinical significance as a prognostic factor in gastric adenocarcinomas. (J Korean Gastric Cancer Assoc 2006;6:91-96)

  • PDF