• Title/Summary/Keyword: 세포노화

Search Result 547, Processing Time 0.035 seconds

The Effect of Celosia cristata L. ethanol Extract on Anti-oxidant & Anti-aging Activity (맨드라미 (Celosia cristata L.) 에탄올 추출물이 항산화 및 항노화 작용에 미치는 효과)

  • Pyo, Young-Hee;Yoon, Mi-Yun;Son, Ju-Hyun;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.431-438
    • /
    • 2008
  • For the experiment, to develop new materials for cosmetics, the Celosia cristata L. plant ethanol extract were used for physiological effect and cosmetics application research. The Celosia cristata L. is a Korean traditional variety grown. To investigate the effect of Ethanol extract of Celosia cristata L. on skin care, we measured anti-oxidant activity and anti-aging activity. Celosia cristata L. ethanol extract itself had anti-oxidant activity in a dose-dependent manner in 1-diphenyl-2-picryl-hydrazyl(DPPH) radical scavenging. Ethanol extract had anti-oxidant activity in a dose-dependent manner. Silica dose-dependently increased the intracellular ROS generation in RAW 264.7 cells. Celosia cristata L. ethanol extract inhibited silica-induced intracellular superoxide anion generation and $H_2O_2$ generation and hydro-peroxide generation in RAW 264.7 cells. For anti-aging effects, the hyaluronidase inhibition effects, were relatively strong and they also showed elastase activity inhibition effects, which suggesting the Celosia cristata L. ethanol extract might be used as hydration and anti-wrinkle agents. From the above results, it is referred that Celosia cristata L. ethanol extract appears to have potent anti-oxidant activity and anti-aging activity.

Influence of Chromosome Number on Cell Growth and Cell Aging in Yeast (효모에서 염색체의 수가 세포성장과 노화에 미치는 영향)

  • Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.646-650
    • /
    • 2016
  • The influence of chromosome number on cell growth and cell aging was investigated in various yeast strains that have many artificial chromosomes constructed using a chromosome manipulation technique. Host strain FY833 and the YKY18, YKY18R, YKY24, and YKY30 strains harboring 16 natural chromosomes, 18 chromosomes, 18 chromosomes containing rDNA chromosome, 24 chromosomes, and 30 chromosomes, respectively, were used, and the specific growth rate of each strain was compared. The specific growth rates in the YKY18 and YKY24 strains were indistinguishable from that in the host strain, while those of the YKY18R and YKY30 strains were reduced to approximately 25% and 40% of the host strain level, respectively. Subsequently, the replicative life span was examined to investigate the relationship between the number of chromosomes and cell aging, and the life span was decreased to approximately 14% and 45% of the host strain level in the YKY24 and YKY30 strains, respectively. Moreover, telomere length, well known as a senescence factor, was shorter and more diversified in the strain, showing decreased life span. Therefore, these results suggest the possibility that an increase in the number of chromosomes containing artificial chromosomes caused cell aging, and we expected these observations would be applied to improve industrial strain harboring of versatile and special artificial chromosomes.

Anti-wrinkle Activity of Lindera obtusiloba Extract (생강나무 추출물의 광노화에 의한 주름형성 억제 효과)

  • Park, Keum-Ju;Park, Seung-Hee;Kim, Jae-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • Chronic exposure of solar ultraviolet (UV) light to human skin results in photoaging with wrinkle formation. This study was performed to investigate anti-wrinkle effects of Lindera obtusiloba extract (LO) on UVB-induced wrinkle formation. We first measured cell proliferation and type I pN collagen synthesis activities in normal human dermal fibroblasts. Cell proliferation and type I pN collagen synthesis were increased by 33.8 % and 91.8 %, respectively, compared with no treatment control. SKH-1 hairless mice were topically applied 5 % LO solution for 10 weeks with UVB irradiation three times a week. After 10 weeks, a visual assessment and replica assay were performed on each mouse. According to visual assessment of close-up photos and skin replica, application of 5 % LO solution inhibited UV-induced wrinkle formation in mouse skin as compared to the vehicle-applied control mice. These results indicated that LO could protect skin wrinkle formation caused by chronic photo-irradiation in hairless mice.

Effects of Anthriscus sylvestris Hoffmann Extract on the Biosynthesis of Collagen in Human Dermal Fibroblasts (사람 섬유아세포에서 전호(Anthriscus sylvestris Hoffmann)추출물이 콜라겐 생합성에 미치는 영향)

  • Lee, Woo-Jung;Kim, Yong-Kee;Kim, Su-Nam
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.240-245
    • /
    • 2012
  • In this study, we investigated the boosting effects on collagen biosynthesis of $Anthriscus$ $sylvestris$ ethanol extract (ASE) in human dermal fibroblasts. To obtain more effective fraction and subfraction for collagen biosynthesis, standard solvent partition and open column chromatography were performed. The EtOH extract, solvent fractions, and 8 EtOAc subfractions were tested for their collagen synthesis capacity by [$^3H$]Proline-incorporation and ELISA assay. ASE increased 25% of total collagen synthesis and 27% of procollagen biosynthesis. The total collagen biosynthesis was increased by EtOAc fraction and E6 subfraction to 28% and 50% respectively. Type I procollagens were also upregulated by EtOAc fraction and E6 subfraction to 30% and 47%, each. Taken together, our data suggest that potential anti-aging effect of ASE on skin is via increasing collagen biosynthesis and effective subtraction is E6 subfraction of EtOAc fraction.

The Roles of Epigenetic Reprogramming in Age-related Diseases (노화관련 질환에 대한 후성유전의 역할)

  • Seonhwa Hwang;Gyeongmin Kim;Hye Kyung Kim;Min Hi Park
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.736-745
    • /
    • 2023
  • Aging is a complex biological process characterized by a gradual decline in cellular and physiological functions. This natural process is associated with age-related diseases, including Alzheimer's disease, atherosclerosis, and hypogonadism, which are significant health concerns among older individuals and can significantly impact their quality of life. Researchers have found that epigenetic markers play a crucial role in regulating aging and age-related diseases. Epigenetic markers are heritable gene expression alterations that do not change in the DNA sequence. This review focuses on the involvement of various epigenetic marks, such as RNA methylation, DNA methylation, and microRNAs (miRNAs), in regulating gene expression patterns associated with age-related diseases, such as Alzheimer's disease, atherosclerosis, and hypogonadism. These epigenetic alterations can lead to the dysregulation of specific genes and signaling pathways, contributing to the development and progression of Alzheimer's disease, atherosclerosis, and hypogonadism. Understanding the molecular mechanisms behind these epigenetic modifications is essential for both the aging population and individuals seeking ways to promote overall well-being. By gaining deeper insights into how epigenetic marker alteration occurs during aging and age-related diseases, researchers can potentially develop targeted therapeutic strategies to alleviate the impact of these conditions and improve the quality of life for older individuals.

Antioxidant and Anti-aging Effects of Extracts from Leaves of the Quercusaliena Blume on Human Dermal Fibroblast (피부 섬유아세포에서 갈참나무 잎 추출물의 항산화 및 항노화 효능)

  • Choi, Sun-Il;Lee, Jong Seok;Lee, Sarah;Yeo, Joohong;Jung, Tae-Dong;Cho, Bong-Yeon;Choi, Seung-Hyun;Sim, Wan-Sup;Han, Xionggao;Lee, Jin-Ha;Kim, Jong Dai;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.2
    • /
    • pp.140-145
    • /
    • 2018
  • The skin of the human body occupies the largest surface area of the body and acts as a protection for the person's internal organs. As such, the skin is a major target of oxidative stressors, and these oxidative stressors are known to contribute to skin aging over the course of time. For the most part, an antioxidant is an effective approach to utilize to prevent symptoms related to the reactive oxygen species (ROS)-induced aging of the skin. Therefore, we investigated the antioxidant and anti-aging activity of the leaves of the Quercusaliena Blume extract (QBE). In our study, we confirmed that the cell viability tested with XTT {2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide innersalt} assay was not affected up to a concentration of $100{\mu}g/mL$. In addition, the cell viability of HDF cells induced by hydrogen peroxide was recovered from 81% to 104% after treatment with QBE, which showed the greater protective effect than that of ascorbic acid. Treatments of QBE dose-dependently inhibited reactive oxygen species (ROS) production in HDF cells induced by hydrogen peroxide, which correlated with their protective effects on cell viability. Since QBE treatment exhibited the suppression effect of skin aging by decreasing the ROS production, QBE could be used as a not only natural anti-aging but also antioxidant resource.

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

The Role of ROS-NF-κB Signaling Pathway in Enhancement of Inflammatory Response by Particulate Matter 2.5 in Lipopolysaccharide-stimulated RAW 264.7 Macrophages (RAW 264.7 대식세포에서 지질 다당류에 의한 미세먼지(PM2.5) 유발 염증 반응 증진에 미치는 ROS-NF-κB 신호 전달 경로의 역할)

  • Kwon, Da Hye;Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Nam, Soo-Wan;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1110-1119
    • /
    • 2021
  • The purpose of this study was to investigate whether the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages could be promoted by particulate matter 2.5 (PM2.5) stimulation. To this end, the levels of inflammatory parameters, reactive oxygen species (ROS) and inflammation-regulating genes were investigated in RAW 264.7 cells treated with PM2.5 in the presence or absence of LPS. Our results showed that the production levels of pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (interleukin-6 and -1β) were significantly increased by PM2.5 stimulation in LPS-treated RAW 264.7 cells, which was correlated with increased expression genes involved in their production. In addition, when LPS-treated RAW 264.7 cells were exposed to PM2.5, nuclear factor-kappaB (NF-κB) expression was further increased in the nucleus, and the expression of inhibitor of NF-κB as well as NF-κB in the cytoplasm was decreased. These results suggest that the co-treatment of PM2.5 and LPS further increases the activation of the NF-κB signaling pathway compared to each treatment alone, thereby contributing to the promotion of transcriptional activity of inflammatory genes. Furthermore, although the generation of ROS was greatly increased by PM2.5 in LPS-treated RAW 264.7 cells, the NF-κB inhibitor did not reduce the generation of ROS. In addition, when the generation of ROS was artificially suppressed, the production of inflammatory mediators and the activation of NF-κB were both abolished. Therefore, our results suggest that the increase in the NF-κB-mediated inflammatory response induced by PM2.5 in LPS-treated RAW 264.7 macrophages was a ROS generation-dependent phenomenon.